当前位置: 首页 > news >正文

算法之美:堆排序原理剖析及应用案例分解实现

        这段时间持续更新关于“二叉树”的专栏文章,关心的小伙伴们对于二叉树的基本原理已经有了初步的了解。接下来,我将会更深入地探究二叉树的原理,并且展示如何将这些原理应用到更广泛的场景中去。文章将延续前面文章的风格,尽量精炼明了,减少冗长的废话,旨在简洁清晰地阐述二叉树的原理及其应用。让我们一起深入了解,并探索其潜在的价值吧!

什么是堆排序

        指利用堆这种数据结构所设计的一种排序算法,将二叉堆的数据进行排序,构建一个有序的序列。在这排序过程中,只需要个别【临时存储】空间,所以堆排序是原地排序算法,空间复杂度为O(1)。

本身大顶堆和小顶堆里面的元素是无序的,只是有一定的规则在里面:
        1)大顶堆,每个父节点的值都大于或等于其子节点的值,即根节点的值最大;
        2)小顶堆,每个父节点的值都小于或等于其子节点的值,即根节点的值最小;

堆排序流程

        把无序数组构建成二叉堆,建堆结束后,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换(删除操作), 堆顶a[1]与最后一个元素a[n]交换,最大元素放到下标为n的位置, 末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆(堆化操作),这样会得到n个元素的次小值
反复执行上述步骤,得到一个有序的数组。

综上所述,这个堆排序的过程其实可以直接分为建堆和排序两大步骤:
        1)【建堆】过程的时间复杂度为O(n),排序过程的时间复杂度为O(nlogn),所以 堆排序整体的时间复杂度为O(nlogn);
        2)【堆排序】不是稳定的算法,在排序的过程中,将堆最后一个节点跟堆顶节点互换,可能改变值相同数据的原始相对顺序;

堆排序动画演示:Heap Sort Visualization (usfca.edu)

堆排序实现

public class HeapSort {/*** 从小到大进行堆排序* @param source*/public static void sort(int[] source) {//步骤一:构建堆,数组下标0不存储数据int[] heap = new int[source.length + 1];//根据待排序数组,构造一个无序的堆System.arraycopy(source, 0, heap, 1, source.length);//对堆中的元素做下沉调整,从长度的一半处开始,往堆顶索引1处扫描)//二叉堆特性:数组索引一半后的都是叶子节点,不需要做下沉,一半前都是非叶子节点,才需要做for (int i = (heap.length) / 2; i > 0; i--) {down(heap, i, heap.length - 1);}System.out.println("大顶堆:"+Arrays.toString(heap));// 步骤二:堆排序}/*** 比较大小,item[left] 元素是否小于 item[right]的元素*/private static boolean rightBig(int[] heap, int left, int right) {return heap[left] < heap[right];}/*** 交互堆中两个元素的位置*/private static void swap(int[] heap, int i, int j) {int temp = heap[i];heap[i] = heap[j];heap[j] = temp;}/*** 使用下沉操作,堆顶和最后一个元素交换后,重新堆化* 不断比较 节点 arr[k]和对应 左节点arr[2*k] 和 右节点arr[2*k+1]的大小,如果当前结点小,则需要交换位置* 直到找到 最后一个索引节点比较完成  则结束* <p>* 数组中下标为 k 的节点* 左子节点下标为 2*k 的节点* 右子节点就是下标 为 2*k+1 的节点* 父节点就是下标为 k/2 取整的节点*/private static void down(int[] heap, int k, int range) {// 最后一个节点的下标是range,即元素总个数while (2 * k <= range) {//记录当前节点的左右子节点,较大的节点int maxIndex;if (2 * k + 1 <= range) {if (rightBig(heap, 2 * k, 2 * k + 1)) {maxIndex = 2 * k + 1;} else {maxIndex = 2 * k;}} else {maxIndex = 2 * k;}//比较当前节点和较大接的值,如果当前节点大则结束if (heap[k] > heap[maxIndex]) {break;} else {//否则往下一层比较,当前节点的k变为子节点中较大的值swap(heap, k, maxIndex);k = maxIndex;}}}/*** 从小到大进行堆排序* @param source*/public static void sort(int[] source) {//步骤一:构建堆,数组下标0不存储数据int[] heap = new int[source.length + 1];//根据待排序数组,构造一个无序的堆System.arraycopy(source, 0, heap, 1, source.length);//对堆中的元素做下沉调整,从长度的一半处开始,往堆顶索引1处扫描)//二叉堆特性:数组索引一半后的都是叶子节点,不需要做下沉,一半前都是非叶子节点,才需要做for (int i = (heap.length) / 2; i > 0; i--) {down(heap, i, heap.length - 1);}System.out.println("大顶堆:"+Arrays.toString(heap));// 步骤二:堆排序,把堆顶元素和数组最后一个索引元素交换;然后再堆化,然后堆顶又是最大元素,再和数组倒数第二索引处交换;持续进行直到最后// 类似删除操作,只需要下沉操作重新堆化即可//记录未排序的元素中最大的索引int maxUnSortIndex = heap.length - 1;//通过循环,交换堆顶元素和最大未排序元素的下标while (maxUnSortIndex != 1) {//交换元素swap(heap, 1, maxUnSortIndex);//排序后最大元素所在的索引,不要参与堆的下沉,所以 递减1maxUnSortIndex--;//继续对堆顶处的元素进行下沉调整down(heap, 1, maxUnSortIndex);}//把heap中的数据复制到原数组source中System.arraycopy(heap, 1, source, 0, source.length);}//Main入口public static void main(String[] args) {//待排序数组int[] arr = {923,23,12,4,9932,11,34,49,123,222,880};//堆排序HeapSort.sort(arr);//输出排序后数组中的元素System.out.println("堆排序:"+Arrays.toString(arr));}}

海量数据之堆应用TopK思想

        从一堆数据中选出前多少个最大或最小数

堆典型问题,思路方案:取大用小,取小用大

取最大的K个数用小顶堆,取最小的K个数用大顶堆;

取海量数据里面最小的K个数

        要找出数组中最小的k个数,就要【构造一个有k个元素的大顶堆】,大顶堆的堆顶元素值最大,比较堆顶的元素和扫描的元素,如果堆顶元素 < 扫描元素,继续扫描其他元素。如果堆顶元素 > 扫描元素 ,将堆顶元素出队,扫描元素插入大顶堆,将更小的元素换到堆中,反复根据上述步骤操作,直到比较完最后一个元素,此时堆里面的就是最小的k个数。

取海量数据里面最大的K个数

        要找出数组中最大的k个数,就要【构造一个有k个元素的小顶堆】,小顶堆的堆顶元素值最小,比较堆顶的元素和扫描的元素,如果堆顶元。

素 > 扫描元素,继续扫描其他元素。如果堆顶元素 < 扫描元素 ,将堆顶元素出队,扫描元素插入小顶堆,将更大的元素换到堆中,反复根据上述步骤操作,直到比较完最后一个元素,此时堆里面的就是最大的k个数。

实际应用及实现

问题

        如何100亿个数中找出最小的前k个数

问题分析

        100亿个数,一个数占四个字节,那么100亿个数就需要40G的存储空间:1G = 10亿字节,  100亿个int = 400亿字节 = 40G。使用普通的电脑和服务器肯定不可能把全部数据,不能创建一个具有100亿个数据的堆,而且使用常规加载进去,存储空间不够大,时间复杂度也是很大。

解决方案

        要找出数组中最小的k个数,就要【构造一个有k个元素的大顶堆】,大顶堆的堆顶元素值最大,比较堆顶的元素和扫描的元素,如果堆顶元素 < 扫描元素,继续扫描其他元素。如果堆顶元素 > 扫描元素 ,将堆顶元素出队,扫描元素插入大顶堆,将更小的元素换到堆中,反复根据上述步骤操作,直到比较完最后一个元素,此时堆里面的就是最小的k个数。

代码实现

public class MinTopKHeapSort {/*** 从小到大进行堆排序* @param source*/public static void sort(int[] source,int temp) {//步骤一:构建堆,数组下标0不存储数据int[] heap = new int[source.length + 1];//根据待排序数组,构造一个无序的堆System.arraycopy(source, 0, heap, 1, source.length);//对堆中的元素做下沉调整,从长度的一半处开始,往堆顶索引1处扫描)//二叉堆特性:数组索引一半后的都是叶子节点,不需要做下沉,一半前都是非叶子节点,才需要做for (int i = (heap.length) / 2; i > 0; i--) {down(heap, i, heap.length - 1);}System.out.println("大顶堆:"+Arrays.toString(heap)+", 新元素="+temp);// 循环将数组中剩余的数放入heap数组中,并进行堆排序,如果当前数小于Heap数组中的第一个数,则将当前数替换为第一个数if (temp < heap[1]) {heap[1] = temp;//重新堆化down(heap, 1, source.length-1);}System.arraycopy(heap, 1, source, 0, source.length);}/*** 比较大小,item[left] 元素是否小于 item[right]的元素*/private static boolean rightBig(int[] heap, int left, int right) {return heap[left] < heap[right];}/*** 交互堆中两个元素的位置*/private static void swap(int[] heap, int i, int j) {int temp = heap[i];heap[i] = heap[j];heap[j] = temp;}/*** 使用下沉操作,堆顶和最后一个元素交换后,重新堆化* 不断比较 节点 arr[k]和对应 左节点arr[2*k] 和 右节点arr[2*k+1]的大小,如果当前结点小,则需要交换位置* 直到找到 最后一个索引节点比较完成  则结束*/private static void down(int[] heap, int k, int range) {//当前节点存在左子树while (2 * i < length) {//此时j为左子树节点int j = 2 * i;//如果当前节点存在右子树,并且右子树的值大于左子树的值if (j < length && arr[j + 1] > arr[j]) {//此时j为右子树节点j = j + 1;}//比较当前节点值与其左右子树值的大小if (arr[i] > arr[j]) {break;} else {swap(arr, i, j);i = j;}}}public static void main(String[] args) {//随机数据int[] arr = {923,982,23,1000,1990,12,4,9932,11,34,49,123,1,222,880};// 定义一个长度为k的数组int top = 3;int[] heap = new int[top];// 循环将数组中的前k个数放入Heap数组中;   for (int i = 0; i < top; i++) {heap[i] = arr[i];}//循环将数组中剩余的数放入heap数组中,并进行堆排序for(int i = top; i < arr.length; i++){MinTopKHeapSort.sort(heap,arr[i]);}//输出排序后数组中的元素System.out.println("最小的 top k 数据:"+Arrays.toString(heap));}}

延申方案

        如果是百亿数据,只需要从文本中读取前k个出来,然后构建大顶堆,然后在从剩余的元素逐个读取比较即可

相关文章:

算法之美:堆排序原理剖析及应用案例分解实现

这段时间持续更新关于“二叉树”的专栏文章&#xff0c;关心的小伙伴们对于二叉树的基本原理已经有了初步的了解。接下来&#xff0c;我将会更深入地探究二叉树的原理&#xff0c;并且展示如何将这些原理应用到更广泛的场景中去。文章将延续前面文章的风格&#xff0c;尽量精炼…...

Net8 ABP VNext完美集成FreeSql、SqlSugar,实现聚合根增删改查,完全去掉EFCore

没有基础的&#xff0c;请参考上一篇 彩蛋到最后一张图里找 参考链接 结果直接上图&#xff0c;没有任何业务代码 启动后&#xff0c;已经有了基本的CRUD功能&#xff0c;还扩展了批量删除&#xff0c;与动态查询 动态查询截图&#xff0c;支持分页&#xff0c;排序 实现原理…...

yolov8直接调用zed相机实现三维测距(python)

yolov8直接调用zed相机实现三维测距&#xff08;python&#xff09; 1. 相关配置2. 版本一2.1 相关代码2.2 实验结果 3. 版本二3.1 相关代码3.2 实验结果 相关链接 此项目直接调用zed相机实现三维测距&#xff0c;无需标定&#xff0c;相关内容如下&#xff1a; 1.yolov5直接调…...

element跑马灯/轮播图,第一页隐藏左边按钮,最后一页隐藏右边按钮(vue 开箱即用)

图示&#xff1a; 第一步&#xff1a; <el-carousel :class"changeIndex0?leftBtnNone:changeIndeximgDataList.length-1? rightBtnNone:" height"546px" :autoplay"false" change"changeNext"><el-carousel-item v-for…...

下载及安装PHP,composer,phpstudy,thinkPHP6.0框架

文章目录 目录 文章目录 前言 一、下载PHP 二、下载composer 三、下载PHPstudy 四、下载think PHP 1.下载 2.多应用开发 前言 thinkPHP是一款开源的PHP框架&#xff0c;它是基于MVC&#xff08;Model-View-Controller&#xff09;设计模式构建的。thinkPHP提供了丰富的…...

volatile使用场景总结

volatile关键字在Java中用于确保变量的可见性以及防止指令重排序&#xff0c;特别是在没有使用锁定机制时对变量进行读写的多线程环境中。以下是需要使用volatile修饰的一些场景&#xff1a; 确保变量的可见性 当一个变量被多个线程访问&#xff0c;且至少有一个线程在写&…...

AcWing 1413. 矩形牛棚(每日一题)

原题链接&#xff1a;1413. 矩形牛棚 - AcWing题库 作为一个资本家&#xff0c;农夫约翰希望通过购买更多的奶牛来扩大他的牛奶业务。 因此&#xff0c;他需要找地方建立一个新的牛棚。 约翰购买了一大块土地&#xff0c;这个土地可以看作是一个 R 行&#xff08;编号 1∼R&…...

macOS Sonoma 14.4.1 (23E224) 正式版发布,ISO、IPSW、PKG 下载

macOS Sonoma 14.4.1 (23E224) 正式版发布&#xff0c;ISO、IPSW、PKG 下载 2024 年 3 月 26 日凌晨&#xff0c;macOS Sonoma 14.4.1 更新修复了一个可能导致连接到外部显示器的 USB 集线器无法被识别的问题。它还解决了可能导致 Java 应用程序意外退出的问题&#xff0c;并修…...

WPF使用外部字体,思源黑体,为例子

1.在工程中新建文件夹&#xff0c;命名为“Font"。 2.将下载好的字体文件复制到Font文件夹。 3.在工程中&#xff0c;加入静态资源 <Window.Resources><FontFamily x:Key"SYBold">/AnalyzeImage;Component/Font/#思源黑体 CN Bold</FontFamily…...

9、jenkins微服务持续集成(一)

文章目录 一、流程说明二、源码概述三、本地部署3.1 SpringCloud微服务部署本地运行微服务本地部署微服务3.2 静态Web前端部署四、Docker快速入门一、流程说明 Jenkins+Docker+SpringCloud持续集成流程说明 大致流程说明: 开发人员每天把代码提交到Gitlab代码仓库Jenkins从G…...

VOC(客户之声)赋能智能家居:打造个性化、交互式的未来生活体验

随着科技的飞速发展&#xff0c;智能家居已成为现代家庭不可或缺的一部分。然而&#xff0c;如何让智能家居更好地满足用户需求&#xff0c;提供更贴心、更智能的服务&#xff0c;一直是行业关注的焦点。在这个背景下&#xff0c;VOC&#xff08;客户之声&#xff09;作为一种用…...

时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测

时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测 目录 时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测&#xff08;完整源码和数据…...

node.js学习(2)

版权声明 以下文章为尚硅谷PDF资料&#xff0c;B站视频链接&#xff1a;【尚硅谷Node.js零基础视频教程&#xff0c;nodejs新手到高手】仅供个人学习交流使用。如涉及侵权问题&#xff0c;请立即与本人联系&#xff0c;本人将积极配合删除相关内容。感谢理解和支持&#xff0c;…...

【pytest】测试数据存储在 Excel 或 TXT 文件中,如何参数化

如果测试数据存储在 Excel 或 TXT 文件中&#xff0c;你可以使用外部库来读取这些数据&#xff0c;并将其转化为参数化测试所需的格式。下面我将分别展示如何从这两种文件中读取数据&#xff0c;并用于参数化测试。 从 Excel 文件中读取测试数据 你可以使用 pandas 库来读取 …...

ubuntu22.04@Jetson Orin Nano安装配置VNC服务端

ubuntu22.04Jetson Orin Nano安装&配置VNC服务端 1. 源由2. 环境3. VNC安装Step 1: update and install xserver-xorg-video-dummyStep 2: Create config for dummy virtual displayStep3: Add the following contents in xorg.conf.dummyStep 4: Update /etc/X11/xorg.con…...

面向对象特征二:继承

继承的概述 生活中的继承 财产继承&#xff1a; 绿化&#xff1a;前人栽树&#xff0c;后人乘凉 “绿水青山&#xff0c;就是金山银山” 样貌&#xff1a; 继承之外&#xff0c;是不是还可以"进化"&#xff1a; 继承有延续&#xff08;下一代延续上一代的基因、财…...

宝塔面板CentOS Stream 8 x86 下如何安装openlitespeed

宝塔自带的软件商店里如果没办法安装&#xff0c;那么我们可以通过指令来手动安装&#xff1a; 第一步&#xff1a; yum install epel-release Package epel-release-8-19.el8.noarch is already installed. Dependencies resolved. Nothing to do. Complete! 第二步&#…...

LeetCode 2952.需要添加的硬币的最小数量:贪心(排序)

【LetMeFly】2952.需要添加的硬币的最小数量&#xff1a;贪心&#xff08;排序&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/minimum-number-of-coins-to-be-added/ 给你一个下标从 0 开始的整数数组 coins&#xff0c;表示可用的硬币的面值&#xff…...

基于SpringBoot + Vue实现的在线装修管理系统设计与实现+毕业论文

介绍 系统包含用户、装修队、管理员三个角色 管理员&#xff1a; 管理员管理&#xff1a;管理其他管理员的账号和权限&#xff0c;确保系统管理的层次化和安全性。 装修队管理&#xff1a;审核装修队的资质&#xff0c;管理装修队的人员信息&#xff0c;监控工程进度&#xff…...

阿里云安全产品简介,Web应用防火墙与云防火墙产品各自作用介绍

在阿里云的安全类云产品中&#xff0c;Web应用防火墙与云防火墙是用户比较关注的安全类云产品&#xff0c;二则在作用上并不是完全一样的&#xff0c;Web应用防火墙是一款网站Web应用安全的防护产品&#xff0c;云防火墙是一款公共云环境下的SaaS化防火墙&#xff0c;本文为大家…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...