集成学习boosting、bagging、stacking
目录
一、介绍
二、三种架构学习
(1)boosting
(2)bagging
(3)stacking
一、介绍:
对于单个模型来说很难拟合复杂的数,模型的抗干扰能力较低,所以我们希望可以集成多个模型,结合多个模型的优缺点提高模型的泛化能力。
针对于集成学习方式:
第一种为Boosting架构,利用基学习器之间串行的方式进行构造强学习器。
第二种是Bagging架构,通过构造多个独立的模型,然后通过选举或者加权的方式构造强学习器。
第三种是Stacking架构,它结合了Boosting和Bagging两种集成方式,它是利用多个基学习器学习原数据,然后将这几个基学习学习到的数据交给第二层模型进行拟合。说白了就是将第一层模型的输出作为第二层模型的输入。
二、三种架构学习
(1)boosting
训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化。对所有基模型预测的结果进行线性综合产生最终的预测结果
第一步:初始化训练数据的权重,w1=w2=...=wn=1/N,N为样本的数量。
第二步:训练第一个基模型,计算模型的错误率,计算模型的系数。
第三步:更新数据集的权重,误分类数据的权重调大,分类正确的数据权值调小。在训练一个基类模型。依次进行
第四步:每个模型对测试数据,进行预测。
第五部:对所有基模型的预测结果进行加权求和。准确率高的模型调大权值,准确率低的模型减小权值。
下图为架构图
【参考学习】:集成学习--Bagging、Boosting、Stacking、Blending - 知乎 (zhihu.com)
(2)bagging
从训练集从进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果
下图为架构图
【参考学习】:集成学习--Bagging、Boosting、Stacking、Blending - 知乎 (zhihu.com)
(3)stacking
将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过所有基模型的预测形成新的测试集,最后再对测试集进行预测。
第一步:使用训练数据,训练T个不同的模型,得到T个基模型。
第二步:使用T个基模型,分别对训练数据进行预测,与原始训练数据的标签一起组成新的训练数据。
第三步:使用T个基模型,分别对测试数据进行预测,生成新的测试数据。
第四步:使用新的训练数据,训练一个元模型。
第五部:使用元模型对测试数据进行预测,得到最终结果。
下图为架构图
【参考学习】:集成学习--Bagging、Boosting、Stacking、Blending - 知乎 (zhihu.com)
【参考学习】【机器学习】集成学习——Stacking模型融合(理论+图解)_stacking集成模型_༺࿈ 海洋༒之心 ࿈༻的博客-CSDN博客
相关文章:

集成学习boosting、bagging、stacking
目录 一、介绍 二、三种架构学习 (1)boosting (2)bagging (3)stacking 一、介绍: 对于单个模型来说很难拟合复杂的数,模型的抗干扰能力较低,所以我们希望可以集成多…...

数据模型(上):模型分类和模型组成
1.模型分类 数据模型是一种由符号、文本组成的集合,用以准确表达信息景观,达到有效交流、沟通的目的。数据建模者要求能与来自不同部门,具有不同技术背景,不同业务经验,不同技术水平的人员交流、沟通。数据建模者要了解每个人员的观点,并通过反馈证明理解无误,最终作…...

郑州轻工业大学2022-2023(2) 数据结构题目集 - ZZULI
6-1 线性表元素的区间删除 6-1 线性表元素的区间删除 分数 20 全屏浏览题目 切换布局 作者 DS课程组 单位 浙江大学 给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变…...

【Python语言基础】——Python MySQL Drop Table
Python语言基础——Python MySQL Drop Table 文章目录Python语言基础——Python MySQL Drop Table一、Python MySQL Drop Table一、Python MySQL Drop Table 删除表 您可以使用 “DROP TABLE” 语句来删除已有的表: 实例 删除 “customers” 表: import…...

2023美团面试真题
面试前需要准备: 1. Java 八股文:了解常考的题型和回答思路; 2. 算法:刷 100-200 道题,记住刷题最重要的是要理解其思想,不要死记硬背,碰上原题很难,但 大多数的解题思路是相通的…...

【微信小程序开发全流程】篇章0:基于JavaScript开发的校园综合类微信小程序的概览
基于JavaScript开发的校园综合类微信小程序的概览 本文仅供学习,未经同意请勿转载 一些说明:上述项目来源于笔者我本科大三阶段2019年电子设计课程项目,在这个项目中,我主要是负责的部分有前端,前后端的对接…...

如何分析sql性能
1、前言 提到sql性能分析,可能都会想到explain,它在mysql里被称为执行计划,也就是说可以通过该命令看出mysql在通过优化器分析之后如何执行sql。mysql的内置优化器十分强大,它能帮我们把sql再次优化,以最低的成本去执…...

市场营销书籍推荐:《经理人参阅:市场营销》
要学好市场营销有什么好方法?答案是看书!比起碎片化地去阅读一些文章或看一些相关视频,读书来得更实在些。倘若能静下心来好好读上一本系统性的市场营销书籍,学好营销管理将不会再是一件难事。然而,问题的关键是&#…...

WPF 控件专题 MediaElement控件详解
1、MediaElement 介绍 MediaElement:表示包含音频和/或视频的控件。 MediaOpened在引发事件之前,ActualWidth控件将ActualHeight报告为零,因为媒体内容用于确定控件的最终大小和位置。 对于仅音频内容,这些属性始终为零。 对于固…...

基于SpringBoot+SpringCloud+Vue前后端分离项目实战 --开篇
本文目录前言做项目的三大好处强强联手(天狗组合)专栏作者简介专栏的优势后端规划1. SpringBoot 和 SpringCloud 的选择2. Mybatis 和 MybatisPlus 和 JPA 的选择3. MySQL 和 Mongodb 的选择4. Redis 和 RocketMQ5. 后端规划小总结后端大纲提前掌握的知识点一期SpringBoot二期S…...

循环队列的实现
我们知道队列的实现可以用单链表和数组,但是循环链表也可以使用这两种方式。首先我们来看看单链表:首先使用单链表,我们需要考虑循环队列的一些特点。单链表实现循环队列我们要考虑几个核心问题:首先我们要区别 解决 空 和 满 的问…...

MTK平台开发入门到精通(休眠唤醒篇)休眠唤醒LPM框架
文章目录 一、lpm驱动源码分析二、设备属性调试文件沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇文章将介绍 lpm 驱动源码分析。 mtk 平台下,其默认的 lpm 机制的源码位置:drivers/misc/mediatek/lpm/ 一、lpm驱动源码分析 目录:drivers/misc/mediatek/lpm/…...

ThreadLocal详解
一、ThreadLocal简介 1、简介 ThreadLocal叫做线程变量,它是一个线程的本地变量,意味着这个变量是线程独有的,是不能与其他线程共享的。这样就可以避免资源竞争带来的多线程的问题。 即 ThreadLocal类用来提供线程内部的局部变量࿰…...

利用Cookie劫持+HTML注入进行钓鱼攻击
目录 HTML注入和cookie劫持: 发现漏洞 实际利用 来源 HTML注入和cookie劫持: HTML注入漏洞一般是由于在用户能够控制的输入点上,由于缺乏安全过滤,导致攻击者能将任意HTML代码注入网页。此类漏洞可能会引起许多后续攻击&#…...

【接口汇总】常用免费的API
短信API 短信验证码:可用于登录、注册、找回密码、支付认证等等应用场景。支持三大运营商,3秒可达,99.99%到达率,支持大容量高并发。 通知短信:当您需要快速通知用户时,通知短信是最快捷有效的…...

数字信号处理知识点
数字信号处理知识点1 频谱图中,横坐标取值范围的含义2 MATLAB常用函数2.1 波形产生2.2 滤波器分析2.3 滤波器实现2.4 线性系统变换2.5 滤波器设计2.5.1 FIR滤波器2.5.2 IIR滤波器2.6 Transforms(变换)2.7 统计信号处理和谱分析2.8 Windows(窗函数)2.9 Parametric Mo…...

计算机网络第八版——第三章课后题答案(超详细)
第三章 该答案为博主在网络上整理,排版不易,希望大家多多点赞支持。后续将会持续更新(可以给博主点个关注~ 第一章 答案 第二章 答案 【3-01】数据链路(即逻辑链路)与链路(即物理链路)有何区…...

九龙证券|磷酸亚铁锂是什么?磷酸亚铁锂的特点和性能介绍
磷酸亚铁锂是一种新式锂离子电池电极资料,化学式:LiFePO4,磷酸亚铁锂为近来新开发的锂离子电池电极资料,首要用于动力锂离子电池,作为正极活性物质运用,人们习气也称其为磷酸铁锂。 磷酸亚铁锂的特色和功能…...

3D目标检测(二)—— 直接处理点云的3D目标检测网络VoteNet、H3DNet
前言上次介绍了基于Point-Based方法处理点云的模块,3D目标检测(一)—— 基于Point-Based方法的PointNet点云处理系列,其中相关的模块则是构成本次要介绍的,直接在点云的基础上进行3D目标检测网络的基础。VoteNet对于直接在点云上预…...

Java学习-IO流-常用工具包(hutool)
Java学习-IO流-常用工具包(hutool) hutool工具包 DateUtil:日期时间工具类 TImeInterval:计时器工具类 StrUtil:字符串工具类 HexUtil:16进制工具类 HashUtil:Hash算法类 ObjectUtil࿱…...

【LeetCode】1. 两数之和
题目链接:https://leetcode.cn/problems/two-sum/ 📕题目要求: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入…...

【数值模型环境搭建】Intel编译器安装
Intel编译器在数值模型编译中被广泛使用,它有一个很好的地方是自带Mpich,不需要额外安装。本文介绍Intel2018.1.163版本的安装。 1、安装包获取 Intel编译器可从官网下载下载: https://www.intel.cn/content/www/cn/zh/homepage.html 或者…...

操作VMware vCenter Converter 实现物理机迁移到虚拟机
实验目的:熟练VMware虚拟化项目中,物理机向ESXI5迁移操作过程。 1、打开VMwarevCenterConverterStandalone5.0软件,按“转换计算机”。 2、选择“已打开电源的计算机”。并输入远程要连接迁移物理机IP地址,登录帐户和密码。 然后…...

hutool XML反序列化漏洞(CVE-2023-24162)
漏洞简介 Hutool 中的XmlUtil.readObjectFromXml方法直接封装调用XMLDecoder.readObject解析xml数据,当使用 readObjectFromXml 去处理恶意的 XML 字符串时会造成任意代码执行。 漏洞复现 我们在 maven 仓库中查找 Hutool https://mvnrepository.com/search?…...

Java简单认识泛型——图文详解
写在开头:想必大家和博主一样,在以往学习JavaSE的语法中,遇到了一个陌生的词——泛型,博主当时很好奇,什么是泛型呢?即使是学完了JavaSE,这个问题都没有解决,只能在百度查阅了解关于泛型的一些皮…...

AcWing171.送礼物
题目描述 达达帮翰翰给女生送礼物,翰翰一共准备了NNN 个礼物,其中第 iii 个礼物的重量是 G[i]G[i]G[i]。 达达的力气很大,他一次可以搬动重量之和不超过 WWW 的任意多个物品。 达达希望一次搬掉尽量重的一些物品,请你告诉达达在…...

领域驱动设计-架构篇
目录 1、软件架构概述 1.1 软件架构概念 1.2 软件架构分类 1.3 软件架构模式 1.4 软件架构风格 2、领域驱动软件架构 2.1 架构风格 六边行架构(领域驱动设计首选) 为什么选择REST架构 松耦合 可伸缩性 易用性 约束性 2.2 架构模型 命令和…...

docker安装kafka
前言最近在用kafka做项目,所以本地搭建下kafka,但是又嫌java安装和安装kafka太麻烦,所以想到用docker来部署。镜像wurstmeister/kafka维护较为频繁的一个Kafka镜像。只包含了Kafka,因此需要另行提供ZooKeeper,推荐使用…...

Selenium4+Python3系列(十一) - Page Factory设计模式
写在前面: Page Object模式,目的是将元素定位和元素操作分层,只接触测试内容,不写基础内容,便于后续对自动化测试用例体系的维护,这是中心思想,也是核心。 那么我们继续将简洁延续,…...

C++基础知识【4】函数及参数
目录 一、函数的基本概念 1.1、构成 1.2、声明和定义 1.3、函数的调用 二、参数 2.1、形参和实参 2.2、参数的传递 传值 传引用 传指针 三、C函数的一些新特性 3.1、Lambda表达式 3.2、右值引用 3.3、默认参数 3.4、变长参数模板 3.5、constexpr函数 3.6、noex…...