当前位置: 首页 > news >正文

集成学习boosting、bagging、stacking

目录

一、介绍

二、三种架构学习

(1)boosting

(2)bagging

(3)stacking


一、介绍:

对于单个模型来说很难拟合复杂的数,模型的抗干扰能力较低,所以我们希望可以集成多个模型,结合多个模型的优缺点提高模型的泛化能力。

针对于集成学习方式:

第一种为Boosting架构,利用基学习器之间串行的方式进行构造强学习器。

第二种是Bagging架构,通过构造多个独立的模型,然后通过选举或者加权的方式构造强学习器。

第三种是Stacking架构,它结合了Boosting和Bagging两种集成方式,它是利用多个基学习器学习原数据,然后将这几个基学习学习到的数据交给第二层模型进行拟合。说白了就是将第一层模型的输出作为第二层模型的输入。
 

二、三种架构学习

(1)boosting

训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化。对所有基模型预测的结果进行线性综合产生最终的预测结果

第一步:初始化训练数据的权重,w1=w2=...=wn=1/N,N为样本的数量。

第二步:训练第一个基模型,计算模型的错误率,计算模型的系数。

第三步:更新数据集的权重,误分类数据的权重调大,分类正确的数据权值调小。在训练一个基类模型。依次进行

第四步:每个模型对测试数据,进行预测。

第五部:对所有基模型的预测结果进行加权求和。准确率高的模型调大权值,准确率低的模型减小权值。

 下图为架构图

【参考学习】:集成学习--Bagging、Boosting、Stacking、Blending - 知乎 (zhihu.com)

(2)bagging

从训练集从进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果

下图为架构图

【参考学习】:集成学习--Bagging、Boosting、Stacking、Blending - 知乎 (zhihu.com)

(3)stacking

将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过所有基模型的预测形成新的测试集,最后再对测试集进行预测。

第一步:使用训练数据,训练T个不同的模型,得到T个基模型。

第二步:使用T个基模型,分别对训练数据进行预测,与原始训练数据的标签一起组成新的训练数据。

第三步:使用T个基模型,分别对测试数据进行预测,生成新的测试数据。

第四步:使用新的训练数据,训练一个元模型。

第五部:使用元模型对测试数据进行预测,得到最终结果。

  下图为架构图

【参考学习】:集成学习--Bagging、Boosting、Stacking、Blending - 知乎 (zhihu.com)



 【参考学习】【机器学习】集成学习——Stacking模型融合(理论+图解)_stacking集成模型_༺࿈ 海洋༒之心 ࿈༻的博客-CSDN博客

相关文章:

集成学习boosting、bagging、stacking

目录 一、介绍 二、三种架构学习 (1)boosting (2)bagging (3)stacking 一、介绍: 对于单个模型来说很难拟合复杂的数,模型的抗干扰能力较低,所以我们希望可以集成多…...

数据模型(上):模型分类和模型组成

1.模型分类 ​ 数据模型是一种由符号、文本组成的集合,用以准确表达信息景观,达到有效交流、沟通的目的。数据建模者要求能与来自不同部门,具有不同技术背景,不同业务经验,不同技术水平的人员交流、沟通。数据建模者要了解每个人员的观点,并通过反馈证明理解无误,最终作…...

郑州轻工业大学2022-2023(2) 数据结构题目集 - ZZULI

6-1 线性表元素的区间删除 6-1 线性表元素的区间删除 分数 20 全屏浏览题目 切换布局 作者 DS课程组 单位 浙江大学 给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变…...

【Python语言基础】——Python MySQL Drop Table

Python语言基础——Python MySQL Drop Table 文章目录Python语言基础——Python MySQL Drop Table一、Python MySQL Drop Table一、Python MySQL Drop Table 删除表 您可以使用 “DROP TABLE” 语句来删除已有的表: 实例 删除 “customers” 表: import…...

2023美团面试真题

面试前需要准备: 1. Java 八股文:了解常考的题型和回答思路; 2. 算法:刷 100-200 道题,记住刷题最重要的是要理解其思想,不要死记硬背,碰上原题很难,但 大多数的解题思路是相通的…...

【微信小程序开发全流程】篇章0:基于JavaScript开发的校园综合类微信小程序的概览

基于JavaScript开发的校园综合类微信小程序的概览 本文仅供学习,未经同意请勿转载 一些说明:上述项目来源于笔者我本科大三阶段2019年电子设计课程项目,在这个项目中,我主要是负责的部分有前端,前后端的对接&#xf…...

如何分析sql性能

1、前言 提到sql性能分析,可能都会想到explain,它在mysql里被称为执行计划,也就是说可以通过该命令看出mysql在通过优化器分析之后如何执行sql。mysql的内置优化器十分强大,它能帮我们把sql再次优化,以最低的成本去执…...

市场营销书籍推荐:《经理人参阅:市场营销》

要学好市场营销有什么好方法?答案是看书!比起碎片化地去阅读一些文章或看一些相关视频,读书来得更实在些。倘若能静下心来好好读上一本系统性的市场营销书籍,学好营销管理将不会再是一件难事。然而,问题的关键是&#…...

WPF 控件专题 MediaElement控件详解

1、MediaElement 介绍 MediaElement:表示包含音频和/或视频的控件。 MediaOpened在引发事件之前,ActualWidth控件将ActualHeight报告为零,因为媒体内容用于确定控件的最终大小和位置。 对于仅音频内容,这些属性始终为零。 对于固…...

基于SpringBoot+SpringCloud+Vue前后端分离项目实战 --开篇

本文目录前言做项目的三大好处强强联手(天狗组合)专栏作者简介专栏的优势后端规划1. SpringBoot 和 SpringCloud 的选择2. Mybatis 和 MybatisPlus 和 JPA 的选择3. MySQL 和 Mongodb 的选择4. Redis 和 RocketMQ5. 后端规划小总结后端大纲提前掌握的知识点一期SpringBoot二期S…...

循环队列的实现

我们知道队列的实现可以用单链表和数组,但是循环链表也可以使用这两种方式。首先我们来看看单链表:首先使用单链表,我们需要考虑循环队列的一些特点。单链表实现循环队列我们要考虑几个核心问题:首先我们要区别 解决 空 和 满 的问…...

MTK平台开发入门到精通(休眠唤醒篇)休眠唤醒LPM框架

文章目录 一、lpm驱动源码分析二、设备属性调试文件沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇文章将介绍 lpm 驱动源码分析。 mtk 平台下,其默认的 lpm 机制的源码位置:drivers/misc/mediatek/lpm/ 一、lpm驱动源码分析 目录:drivers/misc/mediatek/lpm/…...

ThreadLocal详解

一、ThreadLocal简介 1、简介 ThreadLocal叫做线程变量,它是一个线程的本地变量,意味着这个变量是线程独有的,是不能与其他线程共享的。这样就可以避免资源竞争带来的多线程的问题。 即 ThreadLocal类用来提供线程内部的局部变量&#xff0…...

利用Cookie劫持+HTML注入进行钓鱼攻击

目录 HTML注入和cookie劫持: 发现漏洞 实际利用 来源 HTML注入和cookie劫持: HTML注入漏洞一般是由于在用户能够控制的输入点上,由于缺乏安全过滤,导致攻击者能将任意HTML代码注入网页。此类漏洞可能会引起许多后续攻击&#…...

【接口汇总】常用免费的API

短信API 短信验证码:可用于登录、注册、找回密码、支付认证等等应用场景。支持三大运营商,3秒可达,99.99%到达率,支持大容量高并发。 通知短信:当您需要快速通知用户时,通知短信是最快捷有效的…...

数字信号处理知识点

数字信号处理知识点1 频谱图中,横坐标取值范围的含义2 MATLAB常用函数2.1 波形产生2.2 滤波器分析2.3 滤波器实现2.4 线性系统变换2.5 滤波器设计2.5.1 FIR滤波器2.5.2 IIR滤波器2.6 Transforms(变换)2.7 统计信号处理和谱分析2.8 Windows(窗函数)2.9 Parametric Mo…...

计算机网络第八版——第三章课后题答案(超详细)

第三章 该答案为博主在网络上整理,排版不易,希望大家多多点赞支持。后续将会持续更新(可以给博主点个关注~ 第一章 答案 第二章 答案 【3-01】数据链路(即逻辑链路)与链路(即物理链路)有何区…...

九龙证券|磷酸亚铁锂是什么?磷酸亚铁锂的特点和性能介绍

磷酸亚铁锂是一种新式锂离子电池电极资料,化学式:LiFePO4,磷酸亚铁锂为近来新开发的锂离子电池电极资料,首要用于动力锂离子电池,作为正极活性物质运用,人们习气也称其为磷酸铁锂。 磷酸亚铁锂的特色和功能…...

3D目标检测(二)—— 直接处理点云的3D目标检测网络VoteNet、H3DNet

前言上次介绍了基于Point-Based方法处理点云的模块,3D目标检测(一)—— 基于Point-Based方法的PointNet点云处理系列,其中相关的模块则是构成本次要介绍的,直接在点云的基础上进行3D目标检测网络的基础。VoteNet对于直接在点云上预…...

Java学习-IO流-常用工具包(hutool)

Java学习-IO流-常用工具包(hutool) hutool工具包 DateUtil:日期时间工具类 TImeInterval:计时器工具类 StrUtil:字符串工具类 HexUtil:16进制工具类 HashUtil:Hash算法类 ObjectUtil&#xff1…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...