数字信号处理知识点
数字信号处理知识点
- 1 频谱图中,横坐标取值范围的含义
- 2 MATLAB常用函数
- 2.1 波形产生
- 2.2 滤波器分析
- 2.3 滤波器实现
- 2.4 线性系统变换
- 2.5 滤波器设计
- 2.5.1 FIR滤波器
- 2.5.2 IIR滤波器
- 2.6 Transforms(变换)
- 2.7 统计信号处理和谱分析
- 2.8 Windows(窗函数)
- 2.9 Parametric Modeling(参数化建模)
- 2.10 Specialized Operations(特殊操作)
- 2.11 模拟滤波器转换
- 2.12 Cepstral Analysis(对数倒谱分析)
- 2.13 Linear Prsdiction(线性预测)
- 2.14 Graphical User Interfaces(图形用户接口)
1 频谱图中,横坐标取值范围的含义
横坐标取值范围为[0,fs/2]或者[0,π]或者[0,1]
matlab信号处理工具规定单位频率为奈奎斯特频率(采样频率的一半),所以基本的滤波器设计函数的截止频率参数均以奈奎斯特频率为基准做归一化。
例如,对于一个采样频率为1000Hz的系统,300Hz则对应300/500=0.6。若要将归一化频率转换为单位圆上的弧度,则将归一化值乘以π(pi)即可。
所以,fvtool函数求得的幅频特性的横坐标是归一化的。若要求Hz为单位的截止频率,只需乘以fs/2即可。
2 MATLAB常用函数
2.1 波形产生
chairp: 产生扫频余弦函数;
diric: 产生Dirichlet或周期sinc函数;
gauspuls: 产生高斯调制地正弦曲线脉冲;
pulstran: 产生一个脉冲序列;
rectpuls: 产生一个非周期的抽样方波;
sawtooth: 产生锯齿波或三角波;
sinc: 产生sinc函数,即sin(πt)/πt;
square: 产生方波;
tripuls: 产生一个非周期的采样三角波;
vco: 压控振荡器。
2.2 滤波器分析
abs: 求绝对值(幅值,matlab函数);
angle: 求相角(matlab函数);
freqs: 模拟滤波器的频率响应;
freqspace: 频率响应中的频率间隔(matlab函数);
freqz: 计算数字滤波器的频率响应;
fvtool: 打开滤波器可视化工具;
滤波器可视化工具是一个交互式工具,能够显示滤波器的幅值、相位响应、群延迟、脉冲响应、阶跃响应、极点-零点图和系数。Fvtool 是 Signal Processing Toolbox™ 中提供的一个图形用户界面
fvtool(Hd, ‘Analysis’, ‘Magnitude’); % 幅度响应
fvtool(Hd, ‘Analysis’, ‘grpdelay’); % 群时延
grpdelay: 计算平均滤波器延迟(群延迟);
impz: 计算数字滤波器的冲激响应;
phasedelay: 计算数字滤波器的相位延迟响应;
phasez: 计算数字滤波器的相位响应;
stepz: 计算滤波器的阶跃响应;
unwrap: 展开相角(matlab函数);
zerophase: 计算数字滤波器的零相位响应;
zpalne: 离散系统零点图。
2.3 滤波器实现
conv: 求卷积和多项式乘法(matlab函数);
conv2: 二维卷积(matlab函数);
convmtx: 卷积矩阵;
deconv: 反卷积和多项式除法(matlab函数);
fftfilt: 采用重叠相加法基于FFT的FIR滤波器实现;
filter: 直接滤波器实现(matlab函数);
filter2: 二维数字滤波(matlab函数);
filtfilt: 零相位数字滤波;
filtic: 直接II型滤波器的初始条件选择;
latcfilt: 格型和格-梯形滤波器实现;
medfilt1: 一维中值滤波;
sgolayfilt: Savitzky-Golay滤波;
sosfilt: 二阶(四次)IIR数字滤波;
upfirdn: 过采样,FIR滤波和抽样。
2.4 线性系统变换
latc2tf: 将格型滤波器参数转换为传输函数格式;
polystab: 稳定多项式;
polyscale: 多项式根的数值范围;
residuez: Z变换部分分式展开或留数计算;
sos2ss: 变系统二阶分割形式为状态空间形式;
sos2tf: 变系统二阶分割形式为传递函数形式;
sos2zp: 变系统二阶分割形式为零极点增益形式;
ss2sos: 变系统状态空间形式为二阶分割形式;
ss2tf: 变系统状态空间形式为传递函数形式;
ss2zp: 变系统状态空间形式为零极点增益形式;
tf2latc: 变传递参数形式为格型滤波器形式;
tf2sos: 变传递参数形式为系统二界分割形式;
tf2ss: 变传递参数形式为系统状态空间形式;
tf2zp: 变连续时间传递函数为零极点增益形式;
tf2zpk: 变离散时间传递函数为零极点增益形式;
zp2sos: 变零极点增益形式为二阶分割形式;
zp2ss: 变零极点增益形式为状态空间形式;
zp2tf: 变零极点增益形式为传递函数形式。
2.5 滤波器设计
2.5.1 FIR滤波器
cfirpm: 复杂非线性相位等纹波滤波器设计;
dfilt: 用面向对象的方式产生滤波器;
fir1: 基于窗函数的FIR滤波器设计;
fir2: 基于频率取样的FIR滤波器设计;
fircls: 多波段有限最小二乘FIR滤波器设计;
fircls1: 低通和高通线性相位FIR滤波器的有限最小二乘设计;
firgauss: 高斯FIR滤波器设计;
firls: 最小二乘线性相位FIR滤波器设计;
firpm: Parks-McClellan最优化FIR滤波器设计;
firpmord: Parks-McClellan最优化FIR滤波器阶估计;
firrcos: 升余弦FIR滤波器设计;
intfilt: 内插FIR滤波器设计;
kaiserord: 用Kaiser窗进行设计的FIR滤波器的参数设计;
sgolay: Savitzky-Golay滤波器设计。
2.5.2 IIR滤波器
butter: Butterworth模拟和数字滤波器设计;
cheby1: Chebyshev I型滤波器设计;
cheby2: Chebyshev II型滤波器设计;
dfilt: 用面向对象的方法产生滤波器;
ellip: 椭圆滤波器设计;
filtstates: 包含滤波器状态信息的对象;
maxflat: 归一化数字Butterworth滤波器设计;
yulewalk: 递归数字滤波器设计。
IIR Filter Order Estimation(IIR滤波器阶的选择)
buttord: 计算Butterworth滤波器的阶和截止频率;
cheb1ord: 计算Chebyshev I型滤波器的阶;
cheb2ord: 计算Chebyshev II型滤波器的阶;
ellipord: 计算椭圆滤波器的最小阶。
2.6 Transforms(变换)
bitrevorder: 将输入序列按比特反向变换;
czt: 线性调频Z变换;
dct: 离散余弦变换(DCT);
dftmtx: 离散傅里叶变换矩阵;
digitrevorder: 将输入序列按数字反向变换;
fft: 一维快速傅里叶变换;
fft2: 二维快速傅里叶变换;
fftshift: 重新编排FFT函数的输出;
goertzel: 用二阶Goertzel算法计算离散傅里叶变换;
hillbert: 希尔伯特变换;
idct: 逆离散余弦变换;
ifft: 一维逆快速傅里叶变换;
ifft2: 二维逆快速傅里叶变换。
2.7 统计信号处理和谱分析
corrcoef: 计算相关系数矩阵;
corrmtx: 计算自相关矩阵的数据矩阵;
cov: 协方差矩阵;
cpsd: 两个信号的互谱密度估计;
dspdata: DSP数据对象的参数信息;
dspopts: 频谱对象的可选参数信息;
mscohere: 两个信号之间的幅度自相关函数估计;
pburg: 基于Burg方法的功率谱密度估计;
pcov: 基于协方差方法的功率谱密度估计;
peig: 基于特征向量方法的伪谱;
periodogram: 基于周期图的功率谱密度估计;
pmcov: 基于修正协方差方法的功率谱密度估计;
pmtm: 基于MTM方法的功率谱密度估计;
pmusic: 基于MUSIC算法的功率谱密度估计;
pwelch: 基于Welch方法的功率谱密度估计;
pyulear: 基于Yule-Walker AR方法的功率谱密度;
rooteig: 基于特征向量方法的频率和功率分析;
rootmusic: 基于root MUSIC算法的频率和功率分析;
spectrum: 含有频谱估计方法的参数信息的对象;
tfestimate: 从输入和输出估计传递函数;
xcorr: 互相关函数估计;
xcorr2: 二维互相关函数估计;
xcov: 互协方差函数估计。
2.8 Windows(窗函数)
barthannwin: 修正的Bartlett-Hann窗;
bartlett: Bartlett窗;
blackman: Blackman窗;
blackmanharris: 最小化4阶Blackman-Harris窗;
bohmanwin: Bohman窗;
chebwin: Chebyshev窗;
flattopwin: 平坦顶部窗;
gausswin: Gaussian窗;
hamming: Hamming窗;
hann: hann窗;
kaiser: Kaiser窗;
nuttallwin: Nuttall定义的最小化4阶Blackman-Harris窗;
parzenwin: Parzen窗;
rectwin: 矩形窗;
sigwin: 用面向对象方法生成窗;
triang: 三角窗;
tukeywin: Tukey窗;
window: 窗函数生成;
wvtool: 窗可视化工具。
2.9 Parametric Modeling(参数化建模)
arburg: 基于Burg方法的AR模型参数估算;
arcov: 基于协方差方法的AR模型参数估算;
armcov: 基于修正协方差方法的AR模型参数估算;
aryule: 基于Yule-Walker方法的AR模型参数估计;
ident: 查看系统识别工具箱文件;
invfreqs: 模拟滤波器拟合频率响应;
invfreqz: 离散滤波器拟合频率响应;
prony: 利用Prony法的离散滤波器拟合时间响应;
stmcb: 利用Steiglitz-McBride迭代方法求线性模型。
2.10 Specialized Operations(特殊操作)
buffer: 将信号向量缓存在数据帧矩阵中;
cell2sos: 将二阶分区的单元序列转换为二阶分区矩阵;
cplxpair: 将复数归为复共轭对;
demod: 通信仿真中的解调;
dpss: 离散椭球体序列(Slepian序列);
dpssclear: 清除数据库中的Slepian序列;
dpssdir: Slepian序列的数据库目录;
dpssload: 从数据库加载Slepian序列;
dpsssave: 保存Slepian序列;
eqtflength: 是传输函数分子和分母等长;
modulate: 通信仿真中的调制;
seqperiod: 计算机序列周期;
sos2cell: 将二阶分区矩阵转换为单元序列;
specgram: 频谱分析;
stem: 离散数据序列作图;
strips: 条状图;
udecode: 将2n进制整型输入解码为浮点数输出;
uencode: 将浮点数输入解码为整型输出。
Analog Lowpass Filter Prototypes(模拟低通滤波器原型)
besselap: Bessl模拟低通滤波器原型;
buttap: Butterworth模拟低通滤波器原型;
cheb1ap: Chebyshev I型模拟低通滤波器原型;
cheb2ap: Chebyshev II型模拟低通滤波器原型;
ellipap: 椭圆模拟低通滤波器原型。
Analog Filter Design(模拟滤波器设计)
besself: Bessel模拟滤波器设计;
butter: Butterworth模拟数字滤波器设计;
cheby1: Chebyshev I型滤波器设计;
cheby2: Chebyshev II型滤波器设计;
ellip: 椭圆滤波器设计。
2.11 模拟滤波器转换
lp2bp: 将低通模拟滤波器转换为带通滤波器;
lp2bs: 将低通模拟滤波器转换为带阻滤波器;
lp2hp: 将低通模拟滤波器转换为带高滤波器;
lp2lp: 改变模拟低通滤波器的截止频率。
Filter Discretization(滤波器离散化)
bilinear: 双线性变换法实现模拟到数字的滤波器变换;
impinvar: 脉冲响应不变法实现模拟到数字的滤波器变换。
2.12 Cepstral Analysis(对数倒谱分析)
cceps: 倒谱分析;
icceps: 逆倒谱分析;
rceps: 实倒谱和最小相位重构。
2.13 Linear Prsdiction(线性预测)
ac2poly: 将自相关序列转换为预测多项式;
ac2rc: 将自相关序列转换为反射系数;
is2rc: 将反正弦参数转换为反射系数;
lar2rc: 将对数域比例参数转换为反射系数;
levinson: Levinson-Durbin递归算法;
lpc: 计算线性预测系数;
lsf2poly: 将线性频谱率转换为预测系数;
poly2ac: 将预测多项式转换为自相关序列;
poly2lsf: 将预测系数转换为线性谱频率;
poly2rc: 将预测多项式转换为反射系数;
rc2ac: 将反射系数转换为自相关序列;
rc2is: 将反射系数转换为反正弦参数;
rc2lar: 将反射系数转换为对数域比例参数;
rc2poly: 将反射系数参数转化为预测多项式;
rlevinson: 逆Levinson-Durbin递归;
schurrc: 利用自相关序列计算反射系数。
Multirate Signal Processing(多速信号处理)
decimate: 降低序列的采样速率;
downsample: 采样速率整数倍下降;
interp: 提高采样速率;
interp1: 一维数据插值;
resample: 按有理数因数改变采样率;
spline: 三次样条函数内插;
upfirdn: 过采样,FIR滤波,取样;
upsample: 采样速率整数倍提高。
2.14 Graphical User Interfaces(图形用户接口)
fdatool: 打开滤波器设计和分析工具;
fvtool: 打开滤波器可视化工具;
sptool: 交互式数字信号处理工具;
wintool: 打开窗函数设计和分析工具;
wvtool: 打开可是窗工具。
相关文章:
数字信号处理知识点
数字信号处理知识点1 频谱图中,横坐标取值范围的含义2 MATLAB常用函数2.1 波形产生2.2 滤波器分析2.3 滤波器实现2.4 线性系统变换2.5 滤波器设计2.5.1 FIR滤波器2.5.2 IIR滤波器2.6 Transforms(变换)2.7 统计信号处理和谱分析2.8 Windows(窗函数)2.9 Parametric Mo…...
计算机网络第八版——第三章课后题答案(超详细)
第三章 该答案为博主在网络上整理,排版不易,希望大家多多点赞支持。后续将会持续更新(可以给博主点个关注~ 第一章 答案 第二章 答案 【3-01】数据链路(即逻辑链路)与链路(即物理链路)有何区…...
九龙证券|磷酸亚铁锂是什么?磷酸亚铁锂的特点和性能介绍
磷酸亚铁锂是一种新式锂离子电池电极资料,化学式:LiFePO4,磷酸亚铁锂为近来新开发的锂离子电池电极资料,首要用于动力锂离子电池,作为正极活性物质运用,人们习气也称其为磷酸铁锂。 磷酸亚铁锂的特色和功能…...
3D目标检测(二)—— 直接处理点云的3D目标检测网络VoteNet、H3DNet
前言上次介绍了基于Point-Based方法处理点云的模块,3D目标检测(一)—— 基于Point-Based方法的PointNet点云处理系列,其中相关的模块则是构成本次要介绍的,直接在点云的基础上进行3D目标检测网络的基础。VoteNet对于直接在点云上预…...
Java学习-IO流-常用工具包(hutool)
Java学习-IO流-常用工具包(hutool) hutool工具包 DateUtil:日期时间工具类 TImeInterval:计时器工具类 StrUtil:字符串工具类 HexUtil:16进制工具类 HashUtil:Hash算法类 ObjectUtil࿱…...
【LeetCode】1. 两数之和
题目链接:https://leetcode.cn/problems/two-sum/ 📕题目要求: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入…...
【数值模型环境搭建】Intel编译器安装
Intel编译器在数值模型编译中被广泛使用,它有一个很好的地方是自带Mpich,不需要额外安装。本文介绍Intel2018.1.163版本的安装。 1、安装包获取 Intel编译器可从官网下载下载: https://www.intel.cn/content/www/cn/zh/homepage.html 或者…...
操作VMware vCenter Converter 实现物理机迁移到虚拟机
实验目的:熟练VMware虚拟化项目中,物理机向ESXI5迁移操作过程。 1、打开VMwarevCenterConverterStandalone5.0软件,按“转换计算机”。 2、选择“已打开电源的计算机”。并输入远程要连接迁移物理机IP地址,登录帐户和密码。 然后…...
hutool XML反序列化漏洞(CVE-2023-24162)
漏洞简介 Hutool 中的XmlUtil.readObjectFromXml方法直接封装调用XMLDecoder.readObject解析xml数据,当使用 readObjectFromXml 去处理恶意的 XML 字符串时会造成任意代码执行。 漏洞复现 我们在 maven 仓库中查找 Hutool https://mvnrepository.com/search?…...
Java简单认识泛型——图文详解
写在开头:想必大家和博主一样,在以往学习JavaSE的语法中,遇到了一个陌生的词——泛型,博主当时很好奇,什么是泛型呢?即使是学完了JavaSE,这个问题都没有解决,只能在百度查阅了解关于泛型的一些皮…...
AcWing171.送礼物
题目描述 达达帮翰翰给女生送礼物,翰翰一共准备了NNN 个礼物,其中第 iii 个礼物的重量是 G[i]G[i]G[i]。 达达的力气很大,他一次可以搬动重量之和不超过 WWW 的任意多个物品。 达达希望一次搬掉尽量重的一些物品,请你告诉达达在…...
领域驱动设计-架构篇
目录 1、软件架构概述 1.1 软件架构概念 1.2 软件架构分类 1.3 软件架构模式 1.4 软件架构风格 2、领域驱动软件架构 2.1 架构风格 六边行架构(领域驱动设计首选) 为什么选择REST架构 松耦合 可伸缩性 易用性 约束性 2.2 架构模型 命令和…...
docker安装kafka
前言最近在用kafka做项目,所以本地搭建下kafka,但是又嫌java安装和安装kafka太麻烦,所以想到用docker来部署。镜像wurstmeister/kafka维护较为频繁的一个Kafka镜像。只包含了Kafka,因此需要另行提供ZooKeeper,推荐使用…...
Selenium4+Python3系列(十一) - Page Factory设计模式
写在前面: Page Object模式,目的是将元素定位和元素操作分层,只接触测试内容,不写基础内容,便于后续对自动化测试用例体系的维护,这是中心思想,也是核心。 那么我们继续将简洁延续,…...
C++基础知识【4】函数及参数
目录 一、函数的基本概念 1.1、构成 1.2、声明和定义 1.3、函数的调用 二、参数 2.1、形参和实参 2.2、参数的传递 传值 传引用 传指针 三、C函数的一些新特性 3.1、Lambda表达式 3.2、右值引用 3.3、默认参数 3.4、变长参数模板 3.5、constexpr函数 3.6、noex…...
约瑟夫森磁效应
电流与波函数的相位有直接的关系,可得约瑟夫森结的电流为 IIcsinϕ\begin{align} II_c sin\phi \end{align} IIcsinϕ 式中,IcI_cIc为临界电流,相位差为ϕϕ2−ϕ1\phi\phi_2-\phi_1ϕϕ2−ϕ1。 根据磁矢势A的定义,B…...
什么是L1和L2正则化,以及它们有什么区别
一、L1和L2正则化是什么? 在防止过拟合的方法中有L1正则化和L2正则化,L1和L2是正则化项,又叫做惩罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。 在二维的情况下,黄色的部分是L2和…...
场景式消费激发春日经济,这些电商品类迎来消费热潮
春日越临近,商机越浓郁。随着气温渐升,春日经济已经潜伏在大众身边。“春菜”、“春装”、“春游”、“春季养生”等春日场景式消费走热。 下面,鲸参谋为大家盘点几个与春日经济紧密相关的行业。 •春日仪式之春游踏青 ——户外装备全面开花…...
[2.1.4]进程管理——进程通信
文章目录第二章 进程管理进程通信(IPC)为什么进程通信需要操作系统支持?(一)共享存储(1)基于存储区的共享(2)基于数据结构的共享(二)消息传递什么…...
ChatGPT也有犯晕的时候
前面测试 ChatGPT 进行写代码、优化代码、解释代码、一般问答都表现的很好。偷个懒,用ChatGPT 帮我写段生物信息代码如果 ChatGPT 给出的的代码不太完善,如何请他一步步改好?代码看不懂?ChatGPT 帮你解释,详细到爆&…...
机器学习与目标检测作业:连通块算法
机器学习与目标检测作业:连通块算法一、连通块算法题目描述二、连通块算法文件结构三、连通块算法程序编写3.1、连通块算法conBlock.h头文件内容3.2、conBlock.cpp源文件内容3.3.3、mian.h头文件内容3.3.4、main.cpp源文件内容如下四、连通块算法程序运行结果一、连…...
HBase基础 --- 增删查改
目录 创建表 查看指定表全名空间中的表 查看表描述 禁用/启用 查看禁用/启动状态 删除表 新增列族 删除列族 更改列族存储版本的限制 增加数据 根据条件查询 查看指定列中不同版本的数据 删除指定列族下的指定列 删除指定行 全表扫描 全表扫描指定列族…...
如何基于AI智能视频技术实现公园景区的人流量实时统计?
一、方案背景春暖花开的季节来临,外出旅游的人群也越来越多。无论是景区、公园、博物馆、步行街等场所,客流超载非常大,给游客带来的体验较差,同时也存在安全隐患。当前景区面临的管理痛点包括:客流信息查询难…...
【JavaWeb】Servlet详解
文章目录1. 前置知识2.servlet生命周期2.1 默认情况下,服务器启动时,servlet对象并没有被创建2.2 用户执行一次请求2.3用户执行第二次请求2.4 3,4,5,6....次请求2.5 关闭服务器3.servlet方法解析4.适配器模式改造servlet4.1不使用servlet模式4.2使用适配…...
谁是世界上最好的编程语言?--编程语言70年浅谈
1、编程语言发展史纵览 严谨起见,本文提到的编程语言指的是「第三代高级编程语言」。 首先,我们从时间维度入手聊聊编程语言。一图胜千言,我们从目前主流的编程语言中,挑选出流行的、具有历史影响力的语言。把它们按时间从上往下…...
Webpack前端资源加载/打包工具
文章目录一、Webpack1、什么是Webpack2、Webpack安装2.1全局安装2.2安装后查看版本号3、创建项目3.1初始化项目3.2创建src文件夹3.3 src下创建common.js3.4 src下创建utils.js3.5 src下创建main.js4、JS打包4.1创建配置文件4.2执行编译命令4.3创建入口页面4.4测试5、CSS打包5.1…...
springcloud3 fegin实现服务调用1
一 Fegin的作用 1.1 fegin的作用 fegin是一个声明式的web服务客户端,让编写web服务器客户端变得非常容易,只需创建一个接口并在接口中添加FeginClients注解即可。 Fegin的使用方式:使用fegin的注解定义接口,调用这个接口&#…...
专业版即将支持自定义场景测试
物联网 MQTT 测试云服务 XMeter Cloud 专业版于 2022 年底上线后,已有不少用户试用,对数千甚至上万规模的 MQTT 并发连接和消息吞吐场景进行测试。同时我们也收到了希望支持更多物联网协议测试的需求反馈。 新年伊始,XMeter 团队全力聚焦于 …...
Process Monitor工具使用实验(23)
实验目的 学习Process Monitor实用小工具的使用,学会利用Process Monitor工具观察程序进程/线程、文件系统、注册表、网络连接等的活动。预备知识 Process Monitor是一个Windows系统下先进的监视工具,它可以显示文件系统、注册表、网络连接、进程…...
钓鱼客服到拿下服务器全过程(重点在于钓鱼添加img src)
重点总结 钓鱼时主动在变量中添加了字段,等待用户点击获取ip信息进行下一步资金盘plus呢 左看右看没啥东西,看看客服系统能不能打xss。 吊毛客服居然不在线,这套客服系统见过是whisper,之前审计过没有存储xss 但能通过伪造图片…...
thinkphp 企业网站/免费网页模板网站
近期对云主机所有服务监控内存溢出快照,防止服务内存溢出也不知道。 于是就引入的saltstack工具,首先查询所有被监控端的oom快照文件 # salt * cmd.run find /opt -name *.hprof 先验证一下脚本是否正常,然后将执行结果保存到指定的目录&am…...
dz网站首页html代码在哪/360搜索推广
01、前言 近期有小伙伴跟我反馈 ,面试有遇到面试官问 python 内存管理机制相关的问题,因为之前没有特地的去了解过,所以不知道怎么回答。 所以今天就专门写了这篇 python 内存管理机制的文章,来给大家系统的梳理一下内存管理机制…...
哈尔滨市网站建设公司/关键词代发排名
简介 Unicorn是一个轻量的跨平台、多架构CPU模拟器框架。 Unicorn is a lightweight multi-platform, multi-architecture CPU emulator framework. 功能: 多架构支持: ARM, ARM64 (ARMv8), m68k, MIPS, PowerPC, RISC-V, S390x (SystemZ), SPARC, TriCore & x86 (includ…...
湘潭本地的网站建设公司/投放广告
oracle 11g 增加了新的分区类型,总结一下目前之前的分区表区间分区散列分区列表分区区间分区:create table gh_range_example(id varchar2(100),range_date date not null)partition by range(range_date)(partition range_15 values less than (to_date…...
wordpress 主题 小工具/活动宣传推广方案怎么写
1. 实验逻辑图 2. master主机的配置(192.168.153.136) 2.1 修改keepalived配置文件 vim /etc/keepalived/keepalived.conf修改内容如下: 2.2 修改完成之后保存退出开启keepalived服务 systemctl start keepalived3. backup主机的配置&am…...
wordpress 图片分享主题/网站模板平台资源
来自 | OSC开源社区(ID:oschina2013)Minix 介绍Minix 是Mini Unix 的缩写,一个迷你版类 Unix 操作系统(约 300MB)。 Minix 原来是荷兰阿姆斯特丹的 Vrije 大学计算机科学系的安德鲁塔能鲍姆(Andrew S. Tanenbaum &…...