当前位置: 首页 > news >正文

NEO 学习之 MLE(最大似然估计)

文章目录

  • 简单题目
  • MLE 在不同的分布的运用
    • 正态分布
    • 指数分布
    • 均匀分布
    • 泊松分布

  • 如何理解 最大似然估计? 就是我们先取出一堆样本,得到一个L( θ \theta θ) 函数,然后的话,这个是关于 θ \theta θ 的一个函数,那么由于存在即合理,只有概率驱动,也就是这个函数取得最大值的时候,该事件才会发生

简单题目

在这里插入图片描述

  • 此题问的是求丢色子,求得到偶数点的概率

在这里插入图片描述

  • 求两次都得到硬币的背面的概率

在这里插入图片描述

  • 拿球问题

在这里插入图片描述

  • 符合的点数是 1,5,6

MLE 在不同的分布的运用

正态分布

对于给定的数据集 {1, 3, 4, 6, 7},我们想要估计生成这些数据的正态分布的参数 μ 的最大似然估计(MLE)。

正态分布的概率密度函数(PDF)为:

f ( x ; μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) f(x;μ,σ2)=2πσ2 1exp(2σ2(xμ)2)

其中,( μ \mu μ) 表示平均值,( σ 2 \sigma^2 σ2 ) 表示方差。

对于给定的数据集,我们可以使用最大似然估计来找到最适合这些数据的参数( μ \mu μ) 。对于正态分布,( μ \mu μ) 的最大似然估计是数据的平均值。

因此,对于数据集 {1, 3, 4, 6, 7},( μ \mu μ) 的最大似然估计是这些数据的平均值:

μ ^ = 1 + 3 + 4 + 6 + 7 5 = 21 5 = 4.2 \hat{\mu} = \frac{1 + 3 + 4 + 6 + 7}{5} = \frac{21}{5} = 4.2 μ^=51+3+4+6+7=521=4.2

但由于选项中只有整数,我们应选择最接近 4.2 的整数。

最接近 4.2 的整数是 4。

所以,( μ \mu μ) 的最大似然估计是 4。

指数分布

对于给定的数据集 {2, 4, 6, 8, 10},我们想要估计一个指数分布的参数 λ \lambda λ的最大似然估计(MLE)。

指数分布的概率密度函数(PDF)为:

f ( x ; λ ) = λ e − λ x f(x; \lambda) = \lambda e^{-\lambda x} f(x;λ)=λeλx

对于给定的数据集,我们可以使用最大似然估计来找到最适合这些数据的参数 λ \lambda λ.对于指数分布, λ \lambda λ的最大似然估计是数据的倒数的平均值。

因此,对于数据集 {2, 4, 6, 8, 10}, λ \lambda λ 的最大似然估计为:

λ ^ = n ∑ i = 1 n x i \hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i} λ^=i=1nxin

其中,( n ) 是数据集的大小,( x i x_i xi ) 是数据集中的第 ( i ) 个数据点。

对于给定的数据集,( n = 5 ),( s u m i = 1 n x i = 2 + 4 + 6 + 8 + 10 = 30 sum_{i=1}^{n} x_i = 2 + 4 + 6 + 8 + 10 = 30 sumi=1nxi=2+4+6+8+10=30)。

因此:

[ λ ^ = 5 30 = 1 6 \hat{\lambda} = \frac{5}{30} = \frac{1}{6} λ^=305=61]

所以, λ \lambda λ 的最大似然估计为 ( 1 6 \frac{1}{6} 61 )。

所以答案是:

B) 1/6

均匀分布

在这里插入图片描述

对于给定的数据集 {10, 15, 20, 25, 30},我们想要估计一个在区间 (0, θ) 上的均匀分布的参数 ( θ \theta θ ) 的最大似然估计(MLE)。

在均匀分布中,所有在指定区间内的值都是等可能的。因此,我们可以选择数据集中的最大值作为参数 ( \theta ) 的估计值。

因此,对于数据集 {10, 15, 20, 25, 30},最大值是 30,因此 ( θ \theta θ ) 的最大似然估计是 30。

所以答案是:

D) 30

泊松分布

对于给定的数据集 {3, 5, 7, 9, 11},我们希望估计生成这些数据的泊松分布的参数 μ 的最大似然估计(MLE)。

泊松分布用于描述在固定时间或空间范围内随机事件发生的次数,其概率质量函数为:

P ( X = k ) = e − μ μ k k ! P(X = k) = \frac{e^{-\mu} \mu^k}{k!} P(X=k)=k!eμμk

其中,( k ) 表示事件发生的次数,( μ \mu μ ) 表示平均发生次数。

对于给定的数据集,泊松分布参数( μ \mu μ ) 的最大似然估计是数据的平均值。

因此,对于数据集 {3, 5, 7, 9, 11},( μ \mu μ ) 的最大似然估计是这些数据的平均值:

[ μ ^ = 3 + 5 + 7 + 9 + 11 5 = 35 5 = 7 \hat{\mu} = \frac{3 + 5 + 7 + 9 + 11}{5} = \frac{35}{5} = 7 μ^=53+5+7+9+11=535=7 ]

所以答案是:

D) 7

相关文章:

NEO 学习之 MLE(最大似然估计)

文章目录 简单题目MLE 在不同的分布的运用正态分布指数分布均匀分布泊松分布 如何理解 最大似然估计? 就是我们先取出一堆样本,得到一个L( θ \theta θ) 函数,然后的话,这个是关于 θ \theta θ 的一个函数,那么由于存…...

going和Java对比有什么不同

语法风格:Golang 和 Java 的语法风格有很大的不同。Golang 更加简单,语法类似于 C 语言,而 Java 比较复杂,语法类似于 C。 并发:Golang 在并发方面有很大的优势,支持轻量级线程 goroutine 和 channel 通信…...

RabbitMQ面经 手打浓缩版

保证可靠性 生产者 本地事务完成和消息发送同时完成 通过事务消息完成 重写confirm在里面做逻辑处理 确保发送成功(不成功就放入到重试队列) MQ 打开持久化确保消息不会丢失 消费者 改成手动回应 不重复消费 生产者 保证不重复发送消息 消费者…...

JavaScript引用数据类型

JS总共分为两种数据类型: 1.基本数据类型 2.引用数据类型 基本数据类型在之前的文章中待大家了解过了 今天我们就来了解一下引用数据类型: 首先呢,我们要知道引用数据类型是存储在哪里的:引用数据类型是存放在堆内存中的对象…...

Mac m1 Flink的HelloWorld

首先在官方下载Downloads | Apache Flink 下载好压缩包后解压,得到Flink文件夹 进入:cd flink-1.19.0 ls 查看里面的文件: 执行启动集群 ./bin/start-cluster.sh 输出显示它已经成功地启动了集群,并且正在启动 standalonesessio…...

3.1 Python变量的定义和使用

Python变量的定义和使用 任何编程语言都需要处理数据,比如数字、字符串、字符等,我们可以直接使用数据,也可以将数据保存到变量中,方便以后使用。 变量(Variable)可以看成一个小箱子,专门用来…...

OceanBase中左外连接和反连接的经验分享

本文作者:张瑞远,曾从事银行、证券数仓设计、开发、优化类工作,现主要从事电信级IT系统及数据库的规划设计、架构设计、运维实施、运维服务、故障处理、性能优化等工作。 持有Orale OCM,MySQL OCP及国产代表数据库认证。 获得的专业技能与认证…...

如何提升公众号搜索量?分享内部运营的5步优化技术!

最近一直有自媒体同行朋友在写关于公众号的内容,很多都说公众号现在没得玩了。其实,在运营自媒体上面,思维不通,技术不到位,哪个平台都不适合你玩。 想要在自媒体上面运营变现,一定不要先点击广告变现&…...

【2024】根据系统平均负载情况排查隐患

查看系统负载情况的时候可以使用top和uptime命令。 其中top是一个比较综合的命令,如果我们只需要查看负载情况,可以直接使用uptime命令即可。 uptime命令是一个查看系统运行时间和负载情况的命令,分为四个部分: 系统当前时间系统运行时间当前登录用户数系统平均负载:分别…...

分类任务中的评估指标:Accuracy、Precision、Recall、F1

概念理解 T P TP TP、 T N TN TN、 F P FP FP、 F N FN FN精度/正确率( A c c u r a c y Accuracy Accuracy) 二分类查准率 P r e c i s i o n Precision Precision,查全率 R e c a l l Recall Recall 和 F 1 − s c o r e F1-score F1−s…...

android 音视频基础知识--个人笔记

avi,mkv封装格式数据------》音频流,视频流//字母流(国外会分开) ----〉解封装,解复用打开封装格式 -----》视频压缩数据---压缩H264,H265 -------〉视频解码 ----》原始数据YUV -----〉音频压缩数据---…...

信息工程大学第五届超越杯程序设计竞赛(同步赛)题解

比赛传送门 博客园传送门 c 模板框架 #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc.h> #define rep(i,a,b) for (int ia;i<b;i) #define per(i,a,b) for (int ia;i>b;--i) #define se second #define fi first #define e…...

Python:文件读写

一、TXT文件读写 Python中用open()函数来读写文本文件&#xff0c;返回文件对象&#xff0c;以下是函数语法。 open(<name>, <mode>, <buffering>&#xff0c;<encoding)name&#xff1a;文件名。 mode&#xff1a;打开文件模式。 buffering&#xff1a;设…...

10.windows ubuntu 组装软件:spades,megahit

Spades 是一种用于组装测序数据的软件&#xff0c;特别适用于处理 Illumina 测序平台产生的数据。它的全称是 "St. Petersburg genome assembler"&#xff0c;是一款广泛使用的基因组组装工具。 第一种&#xff1a;wget https://cab.spbu.ru/files/release3.15.3/S…...

K8S之Secret的介绍和使用

Secret Secret的介绍Secret的使用通过环境变量引入Secret通过volume挂载Secret Secret的介绍 Secret是一种保护敏感数据的资源对象。例如&#xff1a;密码、token、秘钥等&#xff0c;而不需要把这些敏感数据暴露到镜像或者Pod Spec中。Secret可以以Volume或者环境变量的方式使…...

git下载安装教程

git下载地址 有一个镜像的网站可以提供下载&#xff1a; https://registry.npmmirror.com/binary.html?pathgit-for-windows/图太多不截了哈哈&#xff0c;一直next即可。...

《剑指 Offer》专项突破版 - 面试题 98、99 和 100 : 和动态规划相关的矩阵路径问题(C++ 实现)

目录 前言 面试题 98 : 路径的数目 面试题 99 : 最小路径之和 面试题 100 : 三角形中最小路径之和 前言 矩阵路径是一类常见的可以用动态规划来解决的问题。这类问题通常输入的是一个二维的格子&#xff0c;一个机器人按照一定的规则从格子的某个位置走到另一个位置&#…...

KY145 EXCEL排序(用Java实现)

描述 Excel可以对一组纪录按任意指定列排序。现请你编写程序实现类似功能。 对每个测试用例&#xff0c;首先输出1行“Case i:”&#xff0c;其中 i 是测试用例的编号&#xff08;从1开始&#xff09;。随后在 N 行中输出按要求排序后的结果&#xff0c;即&#xff1a;当 C…...

属性选择器

1.[title]{background:yellow;}&#xff1a;所有带title标签设置成黄色 2.div[class]{background:yellow;}&#xff1a;所有div中带class标签设置成黄色 3.div[classbox1]{border:1px solid blue; }&#xff1a;div中包含class并且classbox1的设置成蓝边框 4. class…...

软考 - 系统架构设计师 - 关系模型的完整性规则

前言 关系模型的完整性规则是一组用于确保关系数据库中数据的完整性和一致性的规则。这些规则定义了在关系数据库中如何存储、更新和查询数据&#xff0c;以保证数据的准确性和一致性。 详情 关系模型的完整性规则主要包括以下三类&#xff1a; 实体完整性规则 这是确保每个…...

写了几个难一点的sql

写了几个难一点的sql SELECT bn.id AS book_node_id, t.version_id, bn.textbook_id, s.id AS subject_id, s.stage_id, COUNT( CASE WHEN d.document_type_id 1 AND d.scope IS NULL AND p.document_id IS NOT NULL THEN 1 END ) AS type_1_count, COUNT( CASEWHEN d.docume…...

【JDK常用的API】包装类

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏 …...

Android Q(10)黑暗模式适配的实现

一、引言 随着 AndroidQ&#xff08;10&#xff09;的发布&#xff0c;黑暗模式成为了系统级别的特性。为了满足用户在不同环境下的使用需求&#xff0c;应用程序需要及时进行黑暗模式的适配。本文将详细介绍如何在 AndroidQ&#xff08;10&#xff09;上实现黑暗模式的适配&a…...

【git】git使用手册

目录 一 初始化 1.1 账号配置 1.2 ssh生成 1.2.1 配置ssh 1.2.2 测试SSH 1.3 初始化本地仓库并关联远程仓库 二 使用 2.1 上传 2.2 拉取 三 问题 3.1 关联失败 一 初始化 git的安装很简单,下载后大部分进行下一步完成即可----->地址: git工具下载 1.1 账号配置…...

unity中判断方向 用 KeyVertical ,KeyHorizontal 判断ui物体的 方向

float KeyVertical Input.GetAxis("Vertical"); float KeyHorizontal Input.GetAxis("Horizontal"); // 假设 UI 物体在竖直方向上为 Y 轴&#xff0c;水平方向上为 X 轴 Vector2 direction new Vector2(KeyHorizontal, KeyVertical); if (direction…...

前端a4纸尺寸转像素尺寸

前端必备工具推荐网站(免费图床、API和ChatAI等实用工具): http://luckycola.com.cn/ 一、a4纸张有多大 A4纸的尺寸是210mm297mm,也就是21.0cm29.7cm, A4纸尺寸转屏幕像素尺寸和屏幕分辨率有关,首先1英寸2.54cm, 如果屏幕DPI分辨率为72像素/英寸&#xff0c;换算一下&#xff…...

Android 中 调试和减少内存错误

Android 中 调试和减少内存错误 ASan 概述 官网连接&#xff1a; https://developer.android.com/ndk/guides/asan?hlzh-cn ASan API 27开始HWASan&#xff08;替换AScan&#xff09; 从 NDK r21 和 Android 10&#xff08;API 级别 29&#xff09;开始适用于 64 位 Arm 设…...

证券市场概述

证券市场 证券市场参与者证券发行市场&#xff08;一级市场&#xff09;证券发行方式&#xff08;按发行对象&#xff09;证券发行方式&#xff08;按有无中介&#xff09;证券交易市场&#xff08;二级市场&#xff09;证券交易所场外交易市场&#xff08;店头市场、柜台市场&…...

什么是数据结构

一、什么是数据结构 1.数据结构研究计算机数据间的关系 2.包括数据的逻辑结构和储存结构及其操作 数据的逻辑结构&#xff1a;表示数据运算之间的抽象关系 按每个元素可能具有的直接前趋数和后继数将逻辑结构分为“线性结构”和“非线性结构”两大类 数据的储存结构&#…...

基于springboot+vue实现的学校田径运动会管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…...