当前位置: 首页 > news >正文

C语言数据结构易错知识点(6)(快速排序、归并排序、计数排序)

快速排序属于交换排序,交换排序还有冒泡排序,这个太简单了,这里就不再讲解。

归并排序和快速排序都是采用分治法实现的排序,理解它们对分支思想的感悟会更深

计数排序属于非比较排序,在数据集中的情况下可以考虑使用。这时效率也比较高。

 

下面讲解一下这三种排序在代码实现上易错的地方:

一、快速排序

快速排序通过每趟排序确定一个数的最终位置最终实现将数组变得有序的功能。主要有三种方法,第一种方法偏向常规,第二种方法是双指针法,第三种方法是非递归法,除此之外,还有一些优化的方案,如挖坑法,随机确定key,三数取中,后面代码实现上会简要说明。

方法一:常规法

1.代码实现:


void QuickSort1(int* arr, int left, int right)
{int start = left, end = right, key = left;if (left >= right)return;while (left < right){while (left < right && arr[right] >= arr[key])right--;while (left < right && arr[left] <= arr[key])left++;swap(&arr[left], &arr[right]);}swap(&arr[key], &arr[left]);key = left;QuickSort1(arr, start, key - 1);QuickSort1(arr, key + 1, end);
}

2.下面是单趟排序的逻辑:

2aa774f668f8497b97894ffcadca0e70.png

至于需要注意的点,就是当key在左侧时,一定要右侧先动,左侧再动,这样才能保证相遇点的值小于等于arr[key](这个结论可以画图证明,这里就不展开了),当然,逆序同理。

3.下面是整体逻辑的详细解读,写代码时一定要注意细节,后续快排代码不再重复:

4978faa9cd9e4b35b23afafac2f5ef67.png

4.由于相遇点的值小于等于arr[key]这个结论一定程度上难以理解,于是就出现了一种优化方案——挖坑法,代码如下:


void QuickSort5(int* arr, int left, int right)
{if (left >= right)return;int start = left, end = right, key = left, piti = left;//存储坑的下标int tmp = arr[key];//用来初始坑里的值while (left < right){while (left < right && arr[right] >= tmp)right--;if (left < right){arr[piti] = arr[right];piti = right;}while (left < right && arr[left] <= tmp)left++;if (left < right){arr[piti] = arr[left];piti = left;}}arr[piti] = tmp;key = piti;QuickSort5(arr, start, key - 1);QuickSort5(arr, key + 1, end);
}

5.当数组接近有序时,每次调用后key的位置都会很偏,导致递归次数接近N,总时间复杂度来到O(N ^ 2),因此取key尤为关键,关键在于不要一来就取到最小值,因此随机取key和三数取中可以一定程度上缓解这个问题:,代码如下:

三数取中:


int GetMid(int* arr, int left, int right)
{int mid = (left + right) / 2;if (arr[mid] >= arr[left]){if (arr[mid] < arr[right])return mid;else{if (arr[left] < arr[right])return right;elsereturn left;}}else{if (arr[mid] > arr[right])return mid;else{if (arr[right] < arr[left])return left;elsereturn right;}}}

随机取key:

int key = rand() % (right - left + 1) + left;//随机值

但是这些方法依旧不能完全消除快排的缺陷,当数组是1111111111这种时,时间复杂度依然会变成O(N ^ 2)

6.时间复杂度分析

快排的时间复杂度是O(NlogN),分析方法如下:

1abdf1502e1641ca8d215a2406310bbf.png

需要补充的是,logN与N的差别很大,N-logN依然是N的量级,举个例子:已知2的10次方是1024,假如有1024个数据,在快排中,单趟排序的遍历次数为1024、1023、1022一直到1014(末项可能会更小,但不会小多少),我们发现,这些数字差别很小,几乎是由N来决定的,所以上面图中说我们一般可以将单趟遍历的次数看作N

方法二:双指针法

这个方法的代码实现比较简单,关键在于prev指针和cur指针之间嵌入大于arr[key]的值,注意每次arr[prev]的下一个元素都是大于arr[key]的(当然也有可能相同或者没有元素,但是在这两种特殊情况下对我们功能的实现没有影响),最后交换arr[key]和arr[prev]达到一样的效果,使右侧大于arr[key],左侧小于等于arr[key]。后续逻辑相同。

代码实现如下:


void QuickSort3(int* arr, int left, int right)
{int prev = left, cur = left + 1, key = left;if (left > right)return;while (cur <= right){if (arr[cur] > arr[key])cur++;elseswap(&arr[++prev], &arr[cur++]);}swap(&arr[key], &arr[prev]);key = prev;QuickSort3(arr, left, key - 1);QuickSort3(arr, key + 1, right);
}

方法三:非递归法

这种方法利用了前序遍历和栈的相似性。为什么说是前序遍历呢?因为在遍历时,该层遍历还同时保存了左递归和右递归的必要信息,就像二叉树的父节点能够找到子节点,而子节点找不到父节点。如果是中序或后序就没有这样的特性,就不适合用栈或队列等数据结构来实现。这也是为什么归并排序不适合用栈和队列来实现非递归。

代码如下:


void QuickSort4(int* arr, int left, int right)
{Stack s;StackInit(&s);StackPush(&s, right), StackPush(&s, left);//从右向左入栈while (!isStackEmpty(&s)){int left = StackTop(&s);StackPop(&s);int right = StackTop(&s);StackPop(&s);int prev = left, cur = left + 1, key = left;//从左向右取数据while (cur <= right){if (arr[cur] > arr[key])cur++;elseswap(&arr[++prev], &arr[cur++]);}swap(&arr[key], &arr[prev]);key = prev;if(key + 1 < right)StackPush(&s, right), StackPush(&s, key + 1);//后取得if(left < key - 1)StackPush(&s, key - 1), StackPush(&s, left);//先取得}StackDestroy(&s);
}

相关栈的功能实现如下:


void StackInit(Stack* ps)
{ps->arr = NULL;ps->capacity = ps->size = 0;
}void StackPush(Stack* ps, int val)
{if (ps->capacity == ps->size){ps->capacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;int* tmp = (int*)realloc(ps->arr, sizeof(int) * ps->capacity);assert(tmp);ps->arr = tmp;}ps->arr[ps->size++] = val;
}int StackTop(Stack* ps)
{return ps->arr[ps->size - 1];
}void StackPop(Stack* ps)
{ps->size--;
}bool isStackEmpty(Stack* ps)
{return ps->size == 0;
}void StackDestroy(Stack* ps)
{free(ps->arr), ps->arr = NULL;ps->capacity = ps->size = 0;}

需要注意入栈顺序是从右向左,右下标先入,左下标后入,右递归先入,左递归后入。基本逻辑和递归相似,理解了原理就很好写。

二、归并排序

归并排序一定程度上比较好理解,但非递归法需要注意的细节比较多

方法一:递归法


void _MergeSort(int* arr, int* tmp, int start, int end)
{if (start == end)return;int mid = (start + end) / 2;_MergeSort(arr, tmp, start, mid);_MergeSort(arr, tmp, mid + 1, end);int start1 = start, end1 = mid;int start2 = mid + 1, end2 = end;int i = start1;while (start1 <= end1 && start2 <= end2){if (arr[start1] <= arr[start2])tmp[i++] = arr[start1++];elsetmp[i++] = arr[start2++];}while (start1 <= end1){tmp[i++] = arr[start1++];}while (start2 <= end2){tmp[i++] = arr[start2++];}memmove(arr + start, tmp + start, sizeof(int) * (end - start + 1));
}void MergeSort1(int* arr, int size)
{int* tmp = (int*)malloc(sizeof(int) * size);assert(tmp);_MergeSort(arr, tmp, 0, size - 1);free(tmp), tmp = NULL;
}

整体逻辑:

0de86724086243989b9150329223f24f.png

7e75af49074e4b4b87edbf835f8b5a28.png

方法二:非递归法

非递归法理解起来较为困难,下面详细分析:

代码实现:


void MergeSort2(int* arr, int size)
{int* tmp = (int*)malloc(sizeof(int) * size);assert(tmp);int gap = 1;while (gap <= size){for (int i = 0; i < size; i += 2 * gap){int start1 = i, end1 = start1 + gap - 1;int start2 = end1 + 1, end2 = start2 + gap - 1;int j = start1;if (end1 >= size || start2 >= size)break;while (end2 >= size)end2--;while (start1 <= end1 && start2 <= end2){if (arr[start1] <= arr[start2])tmp[j++] = arr[start1++];elsetmp[j++] = arr[start2++];}while (start1 <= end1){tmp[j++] = arr[start1++];}while (start2 <= end2){tmp[j++] = arr[start2++];}memmove(arr + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;}free(tmp), tmp = NULL;
}

1.整体逻辑

ace813579db94594a8961f1fb9b515d1.png

它的逻辑大体上和递归法相似,但非递归法是直接从最小元素开始向上归并。

2.非递归归并的难点在于数组前面归并是两两为一组,会导致有落单的情况,需要进行处理,上面这张图就展示出了一种情况,下面分析一下:

90cef48aca034af8b525250f38bf479d.png

三、计数排序

这个排序非常简单,不做过多分析

代码实现:


void CountSort(int* arr, int size)
{int max = arr[0], min = arr[0];for (int i = 0; i < size; i++){if (arr[i] > max)max = arr[i];if (arr[i] < min)min = arr[i];}int range = max - min + 1;int* count = (int*)calloc(range, sizeof(int));assert(count);for (int i = 0; i < size; i++){count[arr[i] - min]++;}for (int i = 0, j = 0; i < range; i++){while (count[i]--){arr[j++] = i + min;}}}

注意这个方法用于数据集中时使用,这个时候效率很高。但分散数据就别用,会浪费大量空间。这个排序讨论其稳定性没有意义,因为它只能做到数值的排序,这些排序后没有意义。

 

相关文章:

C语言数据结构易错知识点(6)(快速排序、归并排序、计数排序)

快速排序属于交换排序&#xff0c;交换排序还有冒泡排序&#xff0c;这个太简单了&#xff0c;这里就不再讲解。 归并排序和快速排序都是采用分治法实现的排序&#xff0c;理解它们对分支思想的感悟会更深。 计数排序属于非比较排序&#xff0c;在数据集中的情况下可以考虑使…...

使用 React Router v6.22 进行导航

使用 React Router v6.22 进行导航 React Router v6.22 是 React 应用程序中最常用的路由库之一&#xff0c;提供了强大的导航功能。本文将介绍如何在 React 应用程序中使用 React Router v6.22 进行导航。 安装 React Router 首先&#xff0c;我们需要安装 React Router v6…...

单链表的插入和删除

一、插入操作 按位序插入&#xff08;带头结点&#xff09;&#xff1a; ListInsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e。 typedef struct LNode{ElemType data;struct LNode *next; }LNode,*LinkList;//在第i 个位置插插入元素e (带头结点) bool Li…...

全量知识系统 之“程序”详细设计 之 “絮”---开端“元素周期表”表示的一个“打地鼠”游戏

全量知识系统 之“程序”详细设计 概述-概要和纪要 序 絮&#xff08;一个极简的开场白--“全量知识系统”自我介绍&#xff09; 将整个“人生”的三个阶段 比作“幼稚园”三班 &#xff1a; 第一步【想】-- “感性”思维游戏&#xff1a;打地鼠 。学前教育-新生期&#x…...

【详细讲解WebView的使用与后退键处理】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

【Linux多线程】生产者消费者模型

【Linux多线程】生产者消费者模型 目录 【Linux多线程】生产者消费者模型生产者消费者模型为何要使用生产者消费者模型生产者消费者的三种关系生产者消费者模型优点基于BlockingQueue的生产者消费者模型C queue模拟阻塞队列的生产消费模型 伪唤醒情况&#xff08;多生产多消费的…...

Django屏蔽Server响应头信息

一、背景 最近我们被安全部门的漏洞扫描工具扫出了一个服务端口的漏洞。这个服务本身是一个Django启动的web服务&#xff0c;并且除了登录页面&#xff0c;其它页面或者接口都需要进行登录授权才能进行访问。 漏洞扫描信息和提示修复信息如下: 自然这些漏洞如何修复&#xff0c…...

前端对数据进行分组和计数处理

js对数组数据的处理&#xff0c;添加属性&#xff0c;合并表格数据。 let data[{id:1,group_id:111},{id:2,group_id:111},{id:3,group_id:111},{id:4,group_id:222},{id:5,group_id:222} ]let tempDatadata; tempDatatempData.reduce((arr,item)>{let findarr.find(i>i…...

synchronized 和 lock

synchronized 和 Lock 都是 Java 中用于实现线程同步的机制&#xff0c;它们都可以保证线程安全。 # synchronized 介绍与使用 synchronized 可用来修饰普通方法、静态方法和代码块&#xff0c;当一个线程访问一个被 synchronized 修饰的方法或者代码块时&#xff0c;会自动获…...

ssh 公私钥(github)

一、生成ssh公私钥 生成自定义名称的SSH公钥和私钥对&#xff0c;需要使用ssh-keygen命令&#xff0c;这是大多数Linux和Unix系统自带的标准工具。下面&#xff0c;简单展示如何使用ssh-keygen命令来生成具有自定义名称的SSH密钥对。 步骤 1: 打开终端 首先&#xff0c;打开我…...

LangChain入门:8.打造自动生成广告文案的应用程序

在这篇技术博文中,我们将探讨如何利用LangChain框架的模板管理、变量提取和检查、模型切换以及输出解析等优势,打造一个自动生成广告文案的应用程序。 LangChain框架的优势 在介绍应用程序之前,让我们先了解一下LangChain框架的几个优势: 模板管理: 在大型项目中,文案可…...

AI如何影响装饰器模式与组合模式的选择与应用

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL应用》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 &#x1f680; 转载自热榜文章&#xff1a;设计模式深度解析&#xff1a;AI如何影响…...

【C语言环境】Sublime中运行C语言时MinGW环境的安装

要知道&#xff0c;GCC 官网提供的 GCC 编译器是无法直接安装到 Windows 平台上的&#xff0c;如果我们想在 Windows 平台使用 GCC 编译器&#xff0c;可以安装 GCC 的移植版本。 目前适用于 Windows 平台、受欢迎的 GCC 移植版主要有 2 种&#xff0c;分别为 MinGW 和 Cygwin…...

Ubuntu18.04 下Ublox F9P 实现RTK (利用CORS服务无需自建基站)

本内容参考如下连接:Ubuntu下Ublox F9P利用CORS服务无需自建基站实现RTK-CSDN博客 一、Ublox F9P 硬件模块示意图 图中展示了Ublox F9P的接口,包括串口2(`UART1`和`UART2`),USB1。需要人为通过u-center(Ublox F9P的显示软件)软件设置以下功能: Ublox通过`UART1`向PC端发送…...

springboot+vue在idea上面的使用小结

1.在mac上面删除java的jdk方法&#xff1a; sudo rm -rfjdk的路径 sudo rm -rf /Users/like/Library/Java/JavaVirtualMachines/corretto-17.0.10/Contents/Home 2.查询 Mac的jdk版本和路径&#xff1a; /usr/libexec/java_home -V 3.mac上面查询和关闭idea的网页端口&…...

MyEclipse将项目的开发环境与服务器的JDK 版本保持一致

前言 我们使用MyEclipse开发Java项目开发中&#xff0c;偶尔会遇到因项目开发环境不协调&#xff0c;导致这样那样的问题&#xff0c;在这里以把所有环境调整为JDK1.6 为例。 操作步骤 1.Window-->Preferences-->Java-->Installed JRES 修改为 1.6版本 2.Window-->…...

为BUG编程:函数重载的烦恼 char *匹配bool而不是string

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 这是一个BUG。 运行环境为linu…...

C++第十四弹---模板初阶

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1、泛型编程 2、函数模板 2.1、函数模板的概念 2.2、函数模板的格式 2.3、函数模板的原理 2.4、函数模板的实例化 2.5、模板参数的匹配原则 …...

C++--内联函数

当调用一个函数时&#xff0c;程序就会跳转到该函数&#xff0c;函数执行完毕后&#xff0c;程序又返回到原来调用该函数的位置的下一句。 函数的调用也需要花时间&#xff0c;C中对于功能简单、规模小、使用频繁的函数&#xff0c;可以将其设置为内联函数。 内联函数&#xff…...

java数组与集合框架(一) -- 数据结构,数组

数据结构 概述 为什么要讲数据结构&#xff1f; 任何一个有志于从事IT领域的人员来说&#xff0c;数据结构&#xff08;Data Structure&#xff09;是一门和计算机硬件与软件都密切相关的学科&#xff0c;它的研究重点是在计算机的程序设计领域中探讨如何在计算机中组织和存储…...

React 应用实现监控可观测性最佳实践

前言 React 是一个用于构建用户界面的 JavaScript 框架。它采用了虚拟 DOM 和 JSX&#xff0c;提供了一种声明式的、组件化的编程模型&#xff0c;以便更高效地构建用户界面。无论是简单还是复杂的界面&#xff0c;React 都可以胜任。 YApi 是使用 React 编写的高效、易用、功…...

批处理(Batch)把Excel文件xls格式和xlsx格式进行互换

批处理&#xff08;Batch&#xff09;把Excel文件xls格式改成xlsx格式以及xlsx格式改为xls格式。 Case1:xls转xlsx - 单个文件.bat $Excel New-Object -ComObject Excel.Application $Excel.Visible $false $Workbook $Excel.Workbooks.Open("C:\Test\Excel\1.xls&qu…...

Adobe ColdFusion 任意文件读取漏洞复现(CVE-2024-20767)

0x01 产品简介 Adobe ColdFusion是美国奥多比(Adobe)公司的一套快速应用程序开发平台。该平台包括集成开发环境和脚本语言,将可扩展、改变游戏规则且可靠的产品的愿景变为现实。 0x02 漏洞概述 由于 Adobe ColdFusion 的访问控制不当,未经身份认证的远程攻击者可以构造恶…...

搜索与图论——Floyd算法求最短路

floyd算法用来求多源汇最短路 用邻接矩阵来存所有的边 时间复杂度O(n^3) #include<iostream> #include<cstring> #include<algorithm>using namespace std;const int N 20010,INF 1e9;int n,m,k; int g[N][N];void floyd(){for(int k 1;k < n;k ){f…...

春招冲刺百题计划--矩阵篇

289. 生命游戏 题目&#xff1a; 给定一个包含 m n 个格子的面板&#xff0c;每一个格子都可以看成是一个细胞。每个细胞都具有一个初始状态&#xff1a; 1 即为 活细胞 &#xff08;live&#xff09;&#xff0c;或 0 即为 死细胞 &#xff08;dead&#xff09;。每个细胞与…...

LLM大语言模型(八):ChatGLM3-6B使用的tokenizer模型BAAI/bge-large-zh-v1.5

背景 BGE embedding系列模型是由智源研究院研发的中文版文本表示模型。 可将任意文本映射为低维稠密向量&#xff0c;以用于检索、分类、聚类或语义匹配等任务&#xff0c;并可支持为大模型调用外部知识。 BAAI/BGE embedding系列模型 模型列表 ModelLanguageDescriptionq…...

MySQL中的三种日志

MySQL 包括三种类型的⽇志&#xff0c;分别是 binlog、 redolog 和 undolog&#xff0c;它们分别有不同的作⽤和特点。 binlog &#xff08;存档日志&#xff09; binlog&#xff08;Binary log&#xff09;是 MySQL 中的⼆进制⽇志⽂件&#xff0c;是 Server 层⽣成的的⽇志…...

Codeforces Round 932 (Div. 2)(A,B,C,D)

比赛链接 AB都是思维&#xff0c;更确切地说&#xff0c;A考了字符串字典序&#xff0c;很经典的贪心考点&#xff0c;B考了MEX运算。C出的还是比较好的&#xff0c;dp方法值得学习。D题是个不太好想的容斥&#xff0c;主要是变量有点多&#xff0c;容易搞混。 A. Entertainme…...

初识C++ · 入门(2)

目录 1 引用 1.1引用的概念 1.2 引用的特性 2 传值&#xff0c;传引用的效率 3 引用和指针的区别 4 内联函数 4.1 内联函数的定义 4. 2 内联函数的特性 5 关键字auto 5.1关于命名的思考 5.2 关于auto的发展 5.3 auto使用规则 6 范围for的使用 7 空指针 1 引用 …...

【opencv】教程代码 —ShapeDescriptors

检测和显示图像的轮廓 在图像中搜索并显示轮廓边缘多边形、轮廓矩形和包围圆 获取包含检测到的轮廓的椭圆和旋转的矩形 图像轮廓检测和轮廓凸包 计算图像中的轮廓的矩&#xff08;包括面积、重心等&#xff09;并进行显示 创建和绘制一个多边形图像然后计算并显示图像上每个点到…...

怎么看一个网站是用什么程序做的/厦门关键词优化平台

第2章 Java应用程序介绍2.1 作业检查单2.2 实验前任务2.3 实验练习2.4 实验后任务第3章 Java applet 介绍3.1 作业检查单3.2 实验前任务3.3 实验练习3.4 实验后任务第4章 控制结构(一)4.1 作业检查单4.2 实验前任务4.3 实验练习4.4 实验后任务第2章 Java应用程序介绍2.1 作业检…...

腾龙时时彩做号官方网站/最近的国内新闻

方法一&#xff1a;调用windows自带的shutdown.exe (缺点&#xff1a;会出现倒计时窗口) System.Diagnostics.Process.Start("shutdown.exe", "-r -f -t 15"); shutdown参数含义&#xff1a;-r关闭并重启动此计算机&#xff1b;-f 强制运行的应用程序关闭而…...

有口碑的企业网站建设/app开发公司推荐

原文&#xff1a;http://coolketang.com/staticCoding/5a99105017d009003597a964.html 1. 本节课将为您演示&#xff0c;集合控件在故事板中的使用。首先打开之前创建的单视图项目。 2. 然后打开故事板文件。 3. 点击控件库垂直滚动条&#xff0c;定位集合控件所在的位置。 4. …...

什么事网站建设/廊坊seo排名

转载自&#xff1a;http://youchunyan5.blog.163.com/blog/static/5896062020123474456352/ 本机php环境搭建教程&#xff1a;windows环境下wampserver的配置教程——超级详细 2012-01-25 14:28对于初做PHP网站的朋友来说&#xff0c;第一步肯定是希望在自己电脑是搭建PHP环境&…...

武功县住房和城乡建设局官网站/2022最近十大的新闻热点

对于节点数超过 4000 的大型集群&#xff0c;前一节描述的 MapReduce 系统开始面临着扩展的瓶颈。 2010 年 Yahoo 的团队开始设计下一代的 MapReduce。 &#xff08;Yet Another Resource Negotiator、YARN Application Resource Nefotiator&#xff09;。 YARN 将 JobTracker …...

建设学院网站的通知/竞价托管就选微竞价

http://www.bianceng.cn/webkf/aspx/201102/24785_2.htm转载于:https://www.cnblogs.com/shenzhenjia/archive/2011/07/21/2113323.html...