详解人工智能(概念、发展、机遇与挑战)
前言
人工智能(Artificial Intelligence,简称AI)是一门新兴的技术科学,是指通过模拟、延伸和扩展人类智能的理论、方法、技术和应用系统,以实现对人类认知、决策、规划、学习、交流、创造等智能行为的模拟、延伸和扩展。它是智能学科的重要组成部分,涉及多个学科领域的交叉融合,包括计算机科学、数据分析和统计、硬件和软件工程、语言学、神经学,甚至哲学和心理学等。人工智能的研究和应用涵盖了多个方面,如机器人、语言识别、图像识别、自然语言处理、专家系统、机器学习等。其目标是让计算机和机器能够执行各种高级功能,如查看、理解和翻译口语和书面语言,分析数据,提出建议,甚至进行推理、学习和行动等通常需要人类智力或超出人类分析能力的数据规模的任务。
人工智能的应用广泛,可以大幅提升管理效率和组织效率,降本增效,替代危险或特定岗位的人力,创造新型就业岗位,优化劳动力要素。同时,它还可以为传统制造业智慧赋能,改善生产要素结构,提高新药研发效率,提升金融风险监测水平,推动自动驾驶等新型技术和服务创新。此外,人工智能在图像识别和搜索、优化公共服务等方面也发挥着重要作用,有助于增进社会福祉。
作为牵引互联网、大数据、云计算、区块链等技术加速创新的集成性技术,人工智能正融入经济社会发展的各领域全过程,推动数字经济迅速发展、广泛辐射、全面渗透,成为重组全球要素资源、重塑全球经济结构、改变全球竞争格局的关键力量。
然而,人工智能的发展也带来了一些挑战,如治理挑战、数据隐私和安全问题等。因此,在推动人工智能发展的同时,也需要做好前瞻研究,建立健全相关的法律法规、制度体系、伦理道德,以实现规范与发展的动态平衡。
背景与发展:
-
起源与历史:人工智能的概念可以追溯到上世纪20世纪中叶,但直到上世纪60年代才开始成为独立的学科。早期的人工智能研究主要集中在符号推理和专家系统方面。
-
发展与演进:随着计算机技术的发展和理论研究的深入,人工智能逐渐涵盖了机器学习、神经网络、自然语言处理、计算机视觉等多个领域。近年来,深度学习、强化学习等技术的出现和发展使得人工智能取得了显著的进展。
主要技术与方法:
-
机器学习:机器学习是人工智能的核心技术之一,其目标是让计算机通过学习数据来提高性能。包括监督学习、无监督学习、半监督学习和强化学习等不同的学习范式。
-
神经网络:神经网络是一种模仿人类大脑神经元网络结构的人工智能技术。深度学习是基于神经网络的一种技术,通过多层次的神经元网络来学习数据的特征表示。
-
自然语言处理(NLP):自然语言处理是研究计算机与自然语言之间的交互和理解的领域,包括文本分析、语言生成、语言理解等。
-
计算机视觉(CV):计算机视觉是研究如何使计算机“看懂”图像和视频的技术领域,包括图像识别、物体检测、图像生成等。
-
强化学习:强化学习是一种通过观察环境和采取行动来学习如何最大化累积奖励的机器学习方法,常用于解决决策问题。
应用领域:
-
智能驾驶:人工智能技术在自动驾驶、交通管理、智能交通系统等方面有着广泛的应用。
-
医疗保健:人工智能在医学影像分析、疾病诊断、药物研发等方面发挥着重要作用。
-
金融领域:人工智能在风险评估、欺诈检测、交易分析等方面有着重要应用。
-
智能物联网:人工智能技术与物联网的结合,可以实现智能家居、智能城市等智能化应用。
-
教育领域:人工智能技术可以用于个性化教育、智能辅助教学等方面。
挑战与未来:
-
数据隐私与安全:随着人工智能应用的增多,数据隐私和安全问题日益突出,如何保护用户数据成为一个重要挑战。
-
解释性与透明性:一些人工智能模型的黑箱性质使得其决策过程难以解释,如何提高模型的解释性和透明性是一个重要课题。
-
普适性与公平性:人工智能系统的普适性和公平性问题是当前研究的热点之一,如何确保人工智能系统对所有人都公平透明地运行是一个重要挑战。
-
强化学习与自我学习:强化学习和自我学习技术是人工智能未来发展的重要方向,如何实现智能体自主学习和适应环境是一个重要挑战。
人工智能是否能取代程序员开发?
虽然人工智能技术可能会对程序员岗位产生一定的影响,但程序员仍然具有独特的创造性和高级技能,使得他们在软件开发领域中仍然发挥着重要作用。因此,人工智能技术可能改变程序员的工作内容和工作方式,但不太可能完全取代程序员岗位。
首先,AI在代码自动生成、代码优化、软件测试等方面已经展现出了强大的能力。例如,某些AI工具能够根据需求描述自动生成代码片段,甚至完整的软件程序。此外,AI还可以分析现有代码,提出优化建议,帮助程序员提高代码质量和性能。在软件测试方面,AI可以自动化执行测试用例,发现潜在的问题和缺陷。
然而,尽管AI在编程方面取得了很多进展,但它仍然无法完全取代程序员。这是因为软件开发不仅仅是编写代码那么简单,还涉及到需求分析、系统设计、项目管理等多个方面。这些工作需要人类的智慧和经验,尤其是对于那些复杂、创新性的项目来说,程序员的创造力和想象力是不可或缺的。
此外,AI在理解和处理复杂的人类语言和需求方面仍然存在局限性。虽然AI可以处理大量的数据和信息,但它往往无法像人类一样理解和解释模糊的、抽象的概念。因此,在需求分析和系统设计等阶段,程序员的参与仍然是必要的。
总之,随着人工智能技术的发展,对于高级编程技能(如算法设计、系统架构等)的需求可能会增加,因为这些任务是人工智能无法替代的。创造性的编程任务,如设计新的算法、开发新的应用等,是人类特有的能力,人工智能无法完全替代。程序员具有自我学习和适应新技术的能力,他们可以不断学习和适应新的技术和工具,从而保持竞争力。
虽然人工智能在编程领域有着广泛的应用和潜力,但完全取代程序员进行开发仍然是一个遥远的目标。未来,程序员和AI可能会以更加紧密的方式合作,共同推动软件开发的进步和发展。
相关文章:
详解人工智能(概念、发展、机遇与挑战)
前言 人工智能(Artificial Intelligence,简称AI)是一门新兴的技术科学,是指通过模拟、延伸和扩展人类智能的理论、方法、技术和应用系统,以实现对人类认知、决策、规划、学习、交流、创造等智能行为的模拟、延伸和扩展…...
flyway的使用
什么是flyway Flyway是一个开源的数据库版本控制工具,用于在应用程序的开发和部署过程中管理数据库结构的变化。它允许开发团队使用简单的脚本语言(通常是SQL)来描述数据库的变化,并将这些脚本应用于目标数据库。Flyway还提供了版…...
web渗透测试漏洞复现:ZooKeeper未授权漏洞复现
web渗透测试漏洞复现 1. ZooKeeper未授权漏洞复现1.1 ZooKeeper简介1.2 ZooKeeper漏洞复现1.3 ZooKeeper漏洞修复建议1. ZooKeeper未授权漏洞复现 1.1 ZooKeeper简介 ZooKeeper 是一个分布式的、开源的协调服务,最初由雅虎开发,现隶属于 Apache 软件基金会,是Google的Chub…...
算法错题本
这里写目录标题 错题本注意数据的耦合性对于无解情况的处理思路一组数据以0为结束标记,如何输入到数组中,并计数多个数据进行比较链表删除重复元素的启发循环体里谨慎写类型定义并初始化(一般写上就是错)队列中读取队尾元素数组当…...
绝地求生:爷青回!老版艾伦格回归?雨天雾天的艾伦格你还记得吗?
爷青回!老版艾伦格回归?雨天雾天的艾伦格你还记得吗? 嗨,我是闲游盒~ 早在很久前,就有许多玩家吐槽艾伦格越改越没那味了,没之前的真实感了等等.... ◆ PUBG官方发布了一条推文,其中就有类似老版…...
10秒钟用python接入讯飞星火API(保姆级)
正文: 科大讯飞是中国领先的人工智能公众公司,其讯飞星火API为开发者提供了丰富的接口和服务,以支持各种语音和语言技术的应用。 步骤一:注册账号并创建应用 首先,您需要访问科大讯飞开放平台官网,注册一个…...
认识什么是Webpack
目录 1. 认识Webpack 1.1. 什么是Webpack?(定义) 1.2. 使用Webpack 1.2.1. 需求 1.2.2. 步骤 1.3. 入口和出口默认值 1.3.1. 需求代码如下 2. 修改Webpack打包入口和出口 2.1. 步骤: 2.2. 注意 3. Webpack自动生成html文件 3.1.…...
vulhub打靶记录——healthcare
文章目录 主机发现端口扫描FTP—21search ProPFTd EXPFTP 匿名用户登录 web服务—80目录扫描search openemr exp登录openEMR 后台 提权总结 主机发现 使用nmap扫描局域网内存活的主机,命令如下: netdiscover -i eth0 -r 192.168.151.0/24192.168.151.1…...
css实现更改checkbox的样式;更改checkbox选中后的背景色;更改checkbox选中后的icon
<input class"check-input" type"checkbox"> .check-input {width: 16px;height: 16px;} /* 设置默认的checkbox样式 */input.check-input[type"checkbox"] {-webkit-appearance: none; /* 移除默认样式 */border: 1px solid #999;outl…...
绿联 安装Mysql数据库
绿联 安装Mysql数据库 1、镜像 mysql:5.7 数据库5.7.x系列。 mysql:8 数据库8.x.x系列,安装方式相同。 2、安装 2.1、拉取镜像 拉取5.7.x版本的镜像。 2.2、基础设置 重启策略:第三或第四项均可。 2.3、网络 桥接即可。 2.4、命令 在原有的“mys…...
PyQt ui2py 使用PowerShell将ui文件转为py文件并且将导入模块PyQt或PySide转换为qtpy模块开箱即用
前言 由于需要使用不同的qt环境(PySide,PyQt)所以写了这个脚本,使用找到的随便一个uic命令去转换ui文件,然后将导入模块换成qtpy这个通用库(支持pyside2-6,pyqt5-6),老版本的是Qt.py(支持pysid…...
javascript中的浅拷贝和深拷贝
浅拷贝:拷贝的是引用类型数据的第一层:数组或者对象:的地址 深拷贝:通过不断的递归进行拷贝 原理普及:在js中引用类型的变量储存的时候引用类型数据的地址,因此当地址被重新赋值新的对象的时候ÿ…...
vue 实现自定义分页打印 window.print
首先这里是我自定义了打印界面才实现的效果,如果不用自定义界面实现,应该是一样的吧。具体可能需要自己去试试看 我的需求是界面有两个表格,点击全部打印,我需要把第一表格在打印是第1页,第二个表格是第二页 如图&…...
基于 Erlang 的随机账户分配机制
当你在网上注册新账户时,平台如何为你生成一个独特的用户名或编号呢?这背后其实有一套精心设计的系统。本文将带你了解一种使用 Erlang 语言开发的随机账户分配系统,它既快速又可靠。 ## 随机分配的简单步骤 我们可以将这个过程想象成一个装…...
数码论坛系统的设计与实现|Springboot+ Mysql+Java+ B/S结构(可运行源码+数据库+设计文档)电子科技数码爱好者交流信息新闻畅聊讨论评价
本项目包含可运行源码数据库LW,文末可获取本项目的所有资料。 推荐阅读300套最新项目持续更新中..... 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含ja…...
时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测
时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSTM【24年新算法】…...
探索设计模式的魅力:AI大模型如何赋能C/S模式,开创服务新纪元
🌈 个人主页:danci_ 🔥 系列专栏:《设计模式》 💪🏻 制定明确可量化的目标,坚持默默的做事。 AI大模型如何赋能C/S模式,开创服务新纪元 数字化飞速发展的时代,AI大模型…...
2024年NAND价格市场继续上涨
TrendForce发布了最新的NAND闪存市场价格走势预测。根据其报告,在2024年第二季度,NAND闪存合同价格将进一步呈现两位数的增长,叠加前一季度的增长。不过,客户端SSD的价格涨幅预计在第二季度将不超过15%,相比于2024年第…...
分布式算法 - ZAB算法
ZAB算法是用于实现分布式系统中的原子广播的核心算法,它被广泛应用于ZooKeeper分布式协调服务中。 ZAB算法由两个主要阶段组成:崩溃恢复阶段和消息广播阶段。 在崩溃恢复阶段,当一个ZooKeeper节点启动或者领导者节点崩溃重启时,…...
Java设计之道:色即是空,空即是色
0.引子 我们的这个世界上,存在这么一种东西: 第一:它不占据任何3D之体积,即它没有Volume第二:它也不占据任何2D之面积,即它没有Area第三:它也不占据任何1D之长度,即它没有Length 总…...
深度学习:基于PyTorch的模型解释工具Captum
深度学习:基于PyTorch的模型解释工具Captum 引言简介示例安装解释模型的预测解释文本模型情绪分析问答 解释视觉模型特征分析特征消融鲁棒性 解释多模态模型 引言 当我们训练神经网络模型时,我们通常只关注模型的整体性能,例如准确率或损失函…...
公司官网怎么才会被百度收录
在互联网时代,公司官网是企业展示自身形象、产品与服务的重要窗口。然而,即使拥有精美的官网,如果不被搜索引擎收录,就无法被用户发现。本文将介绍公司官网如何被百度收录的一些方法和步骤。 1. 创建和提交网站地图 创建网站地图…...
机器学习模型——SVM(支持向量机)
基本概念: Support Vector Machine (支持向量机): 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点。 机:一个算法 SVM是基于统计学习理论的一种机器学习方法。简单地说,就是将数据单元…...
服务器CPU使用过高的原因
大多使用服务器的站长都会碰见这样的问题,在长时间使用后,系统越来越慢,甚至出现卡死或强制重启的情况。打开后台 才发现,CPU使用率已经快要到达90%。那么,我告诉你哪些因素会导致服务器CPU高使用率,从而严…...
基于tensorflow和kereas的孪生网络推理图片相似性
一、环境搭建 基础环境:cuda 11.2 python3.8.13 linux ubuntu18.04 pip install tensorflow-gpu2.11.0 验证:# 查看tensorflow版本 import tensorflow as tf tf.__version__ # 是否能够成功启动GPU from tensorflow.python.client import device_lib pr…...
day4|gin的中间件和路由分组
中间件其实是一个方法, 在.use就可以调用中间件函数 r : gin.Default()v1 : r.Group("v1")//v1 : r.Group("v1").Use()v1.GET("test", func(c *gin.Context) {fmt.Println("get into the test")c.JSON(200, gin.H{"…...
nodejs的express负载均衡
我们知道nodejs是单线程的,在特定场合是不能利用CPU多核的优势的。一般有两种方式来解决,一种是利用nodejs的cluster模块创建多个子进程来处理请求以充分利用cpu的多核,还有一种是nodejs运行多个服务分别监听在不同的port,利用nginx创建一个u…...
计算机网络-HTTP相关知识-RSA和ECDHE及优化
HTTPS建立基本流程 客户端向服务器索要并验证服务器的公钥。通过密钥交换算法(如RSA或ECDHE)协商会话秘钥,这个过程被称为“握手”。双方采用会话秘钥进行加密通信。 RSA流程 RSA流程包括四次握手: 第一次握手:客户…...
axios 封装 http 请求详解
前言 Axios 是一个基于 Promise 的 HTTP 库,它的概念及使用方法本文不过多赘述,请参考:axios传送门 本文重点讲述下在项目中是如何利用 axios 封装 http 请求。 一、预设全局变量 在 /const/preset.js 中配置预先设置一些全局变量 window.…...
牛客2024年愚人节比赛(A-K)
比赛链接 毕竟是娱乐场,放平心态打吧。。。 只有A一个考了数学期望,其他的基本都是acmer特有的脑筋急转弯,看个乐呵即可。 A 我是欧皇,赚到盆满钵满! 思路: 我们有 p 1 p_1 p1 的概率直接拿到一件实…...
建设网站翻译/品牌运营管理公司
移动H5前端性能优化 一、概述 1. PC优化手段在Mobile侧同样适用 2. 在Mobile侧我们提出三秒种渲染完成首屏指标 3. 基于第二点,首屏加载3秒完成或使用Loading 4. 基于联通3G网络平均338KB/s(2.71Mb/s),所以首屏资源不应超过1014KB 5. Mobile侧因手机配置…...
大连手机自适应网站制作费用/某一网站seo策划方案
springCloud 微服务日志配置 项目日志配置 logback-spring.xml <?xml version"1.0" encoding"UTF-8"?> <!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL, 如果设置为WARN,则低…...
企业简介模板免费下载/浙江搜索引擎优化
许多应用中会有视图圆角效果, 如头像会切成圆形样式显示 直接设置视图layer层属性//声明 property (nonatomic, strong) UIImageView *carImgView;//懒加载 - (UIImageView *)carImgView {if (!_carImgView) {_carImgView [[UIImageView alloc] initWithFrame:CGRectMake((kSc…...
哪几个网站适合自己做外贸/app优化推广
一到十二题由于比较简单,所以我直接给出了命令和输出。十二题后详述了解决方法和做题思路。这次做题后对grep、cut 、awk、wc等命令印象更加深刻,学到很多知识。但是学生初来乍到,有错误在所难免,还请老师们纠正。以下是我完成得作…...
建立一个官网多少钱/南宁百度seo排名公司
1.下载 一开始选择的在线安装的方式,https://www.qt.io/download-open-source,发现安装中总是出现未响应的问题,后来采用官方发布版本的方式: http://download.qt.io/official_releases/qt/5.9/5.9.0/qt-opensource-windows-x86-5.9.0.exe,这个离线文件比较大,有2.3G. 2.安装 安…...
免费域名怎么做网站/网站seo推广优化
1 今天自动添加了一些主机,发现有一个是红色的,而且是网络是可以通的,其他机器都很好,重启了还是问题依旧2 于是想用zabbix_get试一下[rootZabbix-Server ~]# zabbix_get -s 90.90.90.118 -k system.cpu.switches zabbix_get [100…...