当前位置: 首页 > news >正文

Pytorch实用教程:torch.from_numpy(X_train)和torch.from_numpy(X_train).float()的区别

在PyTorch中,torch.from_numpy()函数和.float()方法被用来从NumPy数组创建张量,并可能改变张量的数据类型。两者之间的区别主要体现在数据类型的转换上:

  1. torch.from_numpy(X_train):这行代码将NumPy数组X_train转换为一个PyTorch张量,保留了原始NumPy数组的数据类型。
    如果X_train是一个64位浮点数组(即dtype=np.float64),则转换后的PyTorch张量也将具有相同的数据类型torch.float64
    同样,如果原始NumPy数组是整数类型(比如np.int32),转换后的张量也会保持这个数据类型(比如torch.int32)。

  2. torch.from_numpy(X_train).float():这行代码首先将NumPy数组X_train转换为一个PyTorch张量,然后通过.float()方法将张量的数据类型转换为torch.float32
    不管原始NumPy数组的数据类型是什么,应用.float()之后,得到的PyTorch张量都将是单精度浮点数类型。

简单来说,不加.float()的版本保留了NumPy数组的原始数据类型,而加上.float()的版本将数据类型统一转换为了torch.float32

这个转换在深度学习中很常见,因为大多数神经网络操作都使用单精度浮点数进行计算,这样既可以节省内存空间,也可以加快计算速度,尤其是在GPU上执行时。

相关文章:

Pytorch实用教程:torch.from_numpy(X_train)和torch.from_numpy(X_train).float()的区别

在PyTorch中,torch.from_numpy()函数和.float()方法被用来从NumPy数组创建张量,并可能改变张量的数据类型。两者之间的区别主要体现在数据类型的转换上: torch.from_numpy(X_train):这行代码将NumPy数组X_train转换为一个PyTorch张…...

深度学习pytorch好用网站分享

深度学习在线实验室Featurizehttps://featurize.cn/而且这个网站里面还有一些学习教程 免费好用 如何使用 PyTorch 进行图像分类https://featurize.cn/notebooks/5a36fa40-490e-4664-bf98-aa5ad7b2fc2f...

C语言 | Leetcode C语言题解之第2题两数相加

题目: 题解: struct ListNode* addTwoNumbers(struct ListNode* l1, struct ListNode* l2) {struct ListNode *head NULL, *tail NULL;int carry 0;while (l1 || l2) {int n1 l1 ? l1->val : 0;int n2 l2 ? l2->val : 0;int sum n1 n2 …...

Oracle基础

Oracle基础 Oracle,作为全球最大的数据库软件供应商,其数据库产品在企业级应用市场中占据了举足轻重的地位。Oracle数据库以高性能、高可用性、高安全性以及强大的数据管理能力赢得了广泛认可。本文旨在为读者提供Oracle数据库的基础知识,帮…...

从0到1实现RPC | 04 负载均衡和静态注册中心

一、Router的定义 Router路由用于预筛选,Dubbo有这样的设计,SpringCloud没有。 二、LoadBanlancer定义 负载均衡器:默认取第一个 当前支持随机和轮询两种负载均衡器。 随机:从所有provider中随机选择一个。 轮询:每…...

卷积神经网络-池化层

卷积神经网络-池化层 池化层(Pooling Layer)是深度学习神经网络中的一个重要组成部分,通常用于减少特征图的空间尺寸,从而降低模型复杂度和计算量,同时还能增强模型的不变性和鲁棒性。 池化操作通常在卷积神经网络&am…...

【干货集】C# XmlHelper帮助类操作Xml文档的通用方法汇总

前言 该篇文章主要总结的是自己平时工作中使用频率比较高的Xml文档操作的一些常用方法和收集网上写的比较好的一些通用Xml文档操作的方法(主要包括Xml序列化和反序列化,Xml文件读取,Xml文档节点内容增删改的一些通过方法)。当然可…...

Coursera自然语言处理专项课程04:Natural Language Processing with Attention Models笔记 Week01

Natural Language Processing with Attention Models Course Certificate 本文是学习这门课 Natural Language Processing with Attention Models的学习笔记,如有侵权,请联系删除。 文章目录 Natural Language Processing with Attention ModelsWeek 01…...

mysql MHA高可用

目录 工作原理 Node(节点) Manager(管理器) Node和Manager的协作 故障转移流程 优势 配置和管理 配置主从复制 MHA实现高可用 MySQL Master High Availability(MHA)是一个开源的高可用性解决方案&…...

android 扫描二维码

1.在你的build.gradle文件中添加Mobile Vision库的依赖: dependencies {implementation com.google.android.gms:play-services-vision:20.1.0 } 2.创建一个新的Activity来处理扫描过程。 import android.Manifest; import android.content.pm.PackageManager; i…...

[flink 实时流基础] 输出算子(Sink)

学习笔记 Flink作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持。 文章目录 **连接到外部系统****输出到文件**输出到 Kafka输出到 mysql自定义 sink 连接到外部系统 Flink的DataStream API专门提供了向外部写入数据的方…...

case语句

Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 CASE 语句的执行方式与 IF...THEN...ELSIF 语句的执行方式类似,但是它是通过一个表达式的值来决定执行哪个分支 CASE 选择器表达式 WHEN 条件 1 THEN 语句序列 …...

全国加油站分布数据/停车场分布/公园分布/景区分布/保护区分布/poi感兴趣点

加油站是指为汽车和其它机动车辆服务的、零售汽油和机油的补充站,一般为添加燃料油、润滑油等。由于加油站所销售的石油商品具有易燃爆、易挥发、易渗漏、易集聚静电荷的特性,故加油站以“安全”为第一准则。在加油站内严禁烟火,严禁从事可能…...

单片机简介(一)

51单片机 一台能够运行的计算机需要CPU做运算和控制,RAM做数据存储,ROM做程序存储,还有输入/输出设备(串行口、并行输出口等),这些被分为若干块芯片,安装在主板(印刷线路板&#xf…...

Naiveui将message挂载到axios拦截器

最近在做项目,需要将后端的请求结果打印出来 但是想着,要是这样一个一个手动引入naiveui的msg,那不得累死 于是灵机一动,想着既然所有接口要通过拦截器,为什么不将msg写在拦截器呢 一、定义一个消息挂载文件 // The…...

MySQL、Oracle查看字节和字符长度个数的函数

目录 0. 总结1. MySQL1.1. 造数据1.2. 查看字符/字节个数 2. Oracle2.1. 造数据2.2. 查看字符/字节个数 0. 总结 databasecharbyteMySQLchar_length()length()Oraclelength()lengthB() 1. MySQL 1.1. 造数据 sql drop table if exists demo; create table demo (id …...

第五篇:3.4 用户归因和受众(User attribution and audience) - IAB/MRC及《增强现实广告效果测量指南1.0》

翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效果测量定义和其他矩阵之- 3.1 广告印象(AD Impression)第三篇广告效果测量定义和其他矩阵之- 3.2 可见性 (Viewability)第四篇广…...

ES6: class类

类 class 面相对象class关键字创建类关于类的继承 面相对象 一切皆对象。 举例: 操作浏览器要使用window对象;操作网页要使用document对象;操作控制台要使用console对象; ES6中增加了类的概念,其实ES5中已经可以实现类…...

[中级]软考_软件设计_计算机组成与体系结构_08_输入输出技术

输入输出技术 前言控制方式考点往年真题 前言 输入输出技术就是IO技术 控制方式 程序控制(查询)方式:分为无条件传送和程序查询方式两种。 方法简单,硬件开销小,但I/O能力不高,严重影响CPU的利用率。 程序中断方式&#xff1…...

2024-04-04 问AI: 在深度学习中,微调是什么?

文心一言 在深度学习中,微调(Fine-tuning)是一种训练策略,特别针对预训练模型进行。预训练模型通常是在大规模无标注数据上通过自监督学习得到的,它们已经具备了对一般自然语言结构或视觉特征的良好理解能力。微调则是…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

快刀集(1): 一刀斩断视频片头广告

一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...