【BPNN】BP神经网络代码
主代码
%function main()
clc
clear
close all
%% 1.原始数据
%输入
SR1=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
SR2=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...2.7 2.85 2.95 3.1];
SR3=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 0.56 0.59 0.59 0.67 0.69 0.79];
SHURU=[SR1;SR2;SR3];
%输出
SC1=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...22598 25107 33442 36836 40548 42927 43462];
SC2=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...13320 16762 18673 20724 20803 21804];
SHUCHU=[SC1;SC2];
%% 2.BP模型设置
HiddenUnitNum=5;%中间层隐节点数
XXSD=0.05;%学习速度
MAX_CS=50000;%最大训练轮回次数
RMSRMS=0.65*10^(-3);%均方误差
%% 训练完毕后的预测输入集
Input=[73.3900000000000,3.96350000000000,0.988000000000000;75.5500000000000,4.09750000000000,1.02680000000000]';%预测输入集数据
%% 训练
Results=BPNN(SHURU,SHUCHU,HiddenUnitNum,Input,XXSD,MAX_CS,RMSRMS);
BPNN.m
function [anew]=BPNN(SHURU,SHUCHU,HiddenUnitNum,pnew,XXSD,MAX_CS,RMSRMS)
%% 1.读取数据
[~,SamNum]=size(SHURU); %输入样本数量
TestSamNum=SamNum; %测试样本数量
[ForcastSamNum,~]=size(SHUCHU); %预测样本数量
[InDim,~]=size(SHURU); %网络输入维度
[OutDim,~]=size(SHUCHU); %网络输出维度%% 2.利用premnmx函数对数据进行归一化
p=SHURU; %输入数据矩阵
t=SHUCHU; %目标数据矩阵
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 对于输入矩阵p和输出矩阵t进行归一化处理
for i=1:InDimdx(i,:)=[-1,1];%归一化处理后最小值为-1,最大值为1
end
%% 3.BP网络训练
net=newff(dx,[InDim,HiddenUnitNum,OutDim],{'tansig','tansig','purelin'},'traingdx'); %建立模型,并用梯度下降法训练.
net.trainParam.Lr=XXSD; %学习速度为0.05
net.trainParam.epochs=MAX_CS; %最大训练轮回为50000次
net.trainParam.goal=RMSRMS; %均方误差
net=train(net,pn,tn); %开始训练,其中pn,tn分别为输入输出样本
%利用原始数据对BP网络仿真
an=sim(net,pn); %用训练好的模型进行仿真
a=postmnmx(an,mint,maxt); % 把仿真得到的数据还原为原始的数量级;
%% 4.回归
pnewn=tramnmx(pnew,minp,maxp); %利用原始输入数据的归一化参数对新数据进行归一化;
anewn=sim(net,pnewn); %利用归一化后的数据进行仿真;
anew=postmnmx(anewn,mint,maxt); %把仿真得到的数据还原为原始的数量级;
相关文章:
【BPNN】BP神经网络代码
主代码 %function main() clc clear close all %% 1.原始数据 %输入 SR1[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63]; SR2[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.2…...
基于mqtt的物联网控制移动应用程序开发
具体实现问题 MQTT模型、特点、服务质量、报文、消息类型表 java实现mqtt两种方式:Paho Java原生库、spring boot MQTT与HTTP:哪一个最适合物联网? mqtt协议和http协议区别 应用是如何实现mqtt协议 通过调用安卓的MQTT库来实现MQTT协议&…...
MPLS-基础、LSR、LSP、标签、体系结构
MPLS技术 MPLS基础 MPLS:转发数据时,只在网络边缘分析IP报文头,不在每一跳都分析,节约了转发时间。 MPLS:Multiprotocol Label Switching,多协议标签交换骨干网技术。主要应用:VPN、流量工程…...
【RV1126】Ubuntu22.04下sdk编译问题汇集
对于新版本Ubuntu系统来编译SDK,尤其是buildroot ,是一个巨大考验,发现问题如下: 1. c-stack.c的SIGSTKSZ错误 buildroot 报错:c-stack.c:55:26:error:missing binary operator before token “(“55 在buildroot目录中找到c-s…...
51单片机使用uart串口和助手简单调试
基础知识 参考 特殊功能寄存器PCON(控制波特率是否加倍SMOD)、TMOD(T0,T1计时器的功能方式)、TCON(T0,T1计时器的控制)、串口中断、SCON(串口数据控制寄存器) 关闭定时器1中断&…...
Python网络爬虫(五):b站弹幕
上一篇对b站的视频评论爬取进行了探讨,这一篇是弹幕。直接上代码: import csv import json import re import chardet import requestsheaders = {user-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Saf…...
Docker环境安装Postgresql数据库Posrgresql 15.6
宿主机是ubuntu 22.04版本 ubuntu宿主机上安装docker,参见官方文档https://docs.docker.com/engine/install/ubuntu/, docker-ce是社区版 docker-ee是企业版 1、检查Docker是否安装 rootODS1SPGOFSDEV:~# docker Command docker not found, but can be installed …...
当代软件专业大学生与青年在新质生产力背景下的发展探究
在新质生产力的浪潮中,信息技术以前所未有的速度革新,为软件专业的大学生和青年带来了丰富的机遇,同时也伴随着一系列的挑战。他们如何把握时代的脉搏,实现个人的发展,成为了值得深入探讨的话题。 一、新质生产力背景下的机遇 随着新质生产力的不断发展,信息技术在各个领…...
MATLAB——知识点备忘
最近在攻略ADC建模相关方面,由好多零碎的知识点,这里写个备忘录。 Matlab 判断一个数是否为整数 1. isinteger 函数 MATLAB中,可以使用 isinteger 函数来判断一个数是否为整数,例如:要判断x是否为整数可以采用以下代…...
C++入门(以c为基础)——学习笔记2
1.引用 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间。在语法层面,我们认为它和它引用的变量共用同一块内存空间。 可以取多个别名,也可以给别名取别名。 b/c/d本质都是别名&#…...
设计模式-单例模式(懒汉式)
1. 概念 保证一个类只有一个实例并为该实例提供一个全局唯一的访问节点 2. 懒汉式-方式一 2.1 代码示例(方式一) 示例 public class Singleton03 {/*** 构造器私有化*/private Singleton03() {}/*** 成员变量*/private static Singleton03 INSTANCE;…...
算法| ss 回溯
39.组合总数46.全排列—478.子集79.单词搜索—1连续差相同的数字—1 39.组合总数 /*** param {number[]} candidates* param {number} target* return {number[][]}*/ // 思路 // dfs传参,传idx, 剩余target // dfs返回: 0 收集,…...
基于R语言绘制-散点小提琴图
原文链接:R语言绘图 | 散点小提琴图 本期教程 写在前面 本期的图形来自发表在Nature期刊中的文章,这样的基础图形在日常分析中使用频率较高。 获得本期教程数据及代码,后台回复关键词:20240405 绘图 设置路径 setwd("You…...
Arduino开发 esp32cam+opencv人脸识别距离+语音提醒
效果图 低于20厘米语音提醒字体变红 Arduino代码 可直接复制使用(修改自己的WIFI) #include <esp32cam.h> #include <WebServer.h> #include <WiFi.h> // 设置要连接的WiFi名称和密码 const char* WIFI_SSID "gumou"; const char* …...
LeNet卷积神经网络
文章目录 简介conv2d网络层的结构 简介 它是最早发布的卷积神经网络之一 conv2d 这个卷积成的参数先进行介绍一下: self.conv1 nn.Conv2d(in_channels3, out_channels10, kernel_size3, stride1, padding1)先看一下in_channels 输入的通道数,out_cha…...
Python常用算法思想--回溯算法思想详解【附源码】
通过回溯算法解决“组合”问题、“排序”问题、“搜索”之八皇后问题、“子集和”之0-1背包问题、字符串匹配等六个经典案例进行介绍: 一、解决“组合”问题 从给定的一组元素中找到所有可能的组合,这段代码中的 backtrack_combinations 函数使用了回溯思想,调用 backtrack…...
Day5-Hive的结构和优化、数据文件存储格式
Hive 窗口函数 案例 需求:连续三天登陆的用户数据 步骤: -- 建表 create table logins (username string,log_date string ) row format delimited fields terminated by ; -- 加载数据 load data local inpath /opt/hive_data/login into table log…...
01 计算机网络发展与分类
计算机网络:计算机技术与通信技术的结合。 阶段一:早期网络:ARPAnet。 阶段二:厂商独立发展阶段 阶段三:标准化阶段:ISO,TCP/IP 计算机网络分类 计算机网络分类1:通信子网和资源子网 通信子…...
ubuntu安装sublime3并设置中文
安装Sublime Text 3 在Ubuntu上安装Sublime Text 3可以通过以下步骤进行: 打开终端。 导入Sublime Text 3的GPG密钥: wget -qO- https://download.sublimetext.com/sublimehq-pub.gpg | sudo apt-key add - 添加Sublime Text 3的存储库: …...
python调用阿里云短信配置
1. 新增资质和签名 # 访问地址: https://dysms.console.aliyun.com/domestic/text/qualification2. 静静等待几十分钟~~~ 3. 通过sdk去调用,查看有没有python的sdk https://next.api.aliyun.com/api/Dysmsapi/2017-05-25/SendSms?完整代码 # -*- cod…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
