【BPNN】BP神经网络代码
主代码
%function main()
clc
clear
close all
%% 1.原始数据
%输入
SR1=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
SR2=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...2.7 2.85 2.95 3.1];
SR3=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 0.56 0.59 0.59 0.67 0.69 0.79];
SHURU=[SR1;SR2;SR3];
%输出
SC1=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...22598 25107 33442 36836 40548 42927 43462];
SC2=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...13320 16762 18673 20724 20803 21804];
SHUCHU=[SC1;SC2];
%% 2.BP模型设置
HiddenUnitNum=5;%中间层隐节点数
XXSD=0.05;%学习速度
MAX_CS=50000;%最大训练轮回次数
RMSRMS=0.65*10^(-3);%均方误差
%% 训练完毕后的预测输入集
Input=[73.3900000000000,3.96350000000000,0.988000000000000;75.5500000000000,4.09750000000000,1.02680000000000]';%预测输入集数据
%% 训练
Results=BPNN(SHURU,SHUCHU,HiddenUnitNum,Input,XXSD,MAX_CS,RMSRMS);
BPNN.m
function [anew]=BPNN(SHURU,SHUCHU,HiddenUnitNum,pnew,XXSD,MAX_CS,RMSRMS)
%% 1.读取数据
[~,SamNum]=size(SHURU); %输入样本数量
TestSamNum=SamNum; %测试样本数量
[ForcastSamNum,~]=size(SHUCHU); %预测样本数量
[InDim,~]=size(SHURU); %网络输入维度
[OutDim,~]=size(SHUCHU); %网络输出维度%% 2.利用premnmx函数对数据进行归一化
p=SHURU; %输入数据矩阵
t=SHUCHU; %目标数据矩阵
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 对于输入矩阵p和输出矩阵t进行归一化处理
for i=1:InDimdx(i,:)=[-1,1];%归一化处理后最小值为-1,最大值为1
end
%% 3.BP网络训练
net=newff(dx,[InDim,HiddenUnitNum,OutDim],{'tansig','tansig','purelin'},'traingdx'); %建立模型,并用梯度下降法训练.
net.trainParam.Lr=XXSD; %学习速度为0.05
net.trainParam.epochs=MAX_CS; %最大训练轮回为50000次
net.trainParam.goal=RMSRMS; %均方误差
net=train(net,pn,tn); %开始训练,其中pn,tn分别为输入输出样本
%利用原始数据对BP网络仿真
an=sim(net,pn); %用训练好的模型进行仿真
a=postmnmx(an,mint,maxt); % 把仿真得到的数据还原为原始的数量级;
%% 4.回归
pnewn=tramnmx(pnew,minp,maxp); %利用原始输入数据的归一化参数对新数据进行归一化;
anewn=sim(net,pnewn); %利用归一化后的数据进行仿真;
anew=postmnmx(anewn,mint,maxt); %把仿真得到的数据还原为原始的数量级;
相关文章:
【BPNN】BP神经网络代码
主代码 %function main() clc clear close all %% 1.原始数据 %输入 SR1[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63]; SR2[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.2…...
基于mqtt的物联网控制移动应用程序开发
具体实现问题 MQTT模型、特点、服务质量、报文、消息类型表 java实现mqtt两种方式:Paho Java原生库、spring boot MQTT与HTTP:哪一个最适合物联网? mqtt协议和http协议区别 应用是如何实现mqtt协议 通过调用安卓的MQTT库来实现MQTT协议&…...
MPLS-基础、LSR、LSP、标签、体系结构
MPLS技术 MPLS基础 MPLS:转发数据时,只在网络边缘分析IP报文头,不在每一跳都分析,节约了转发时间。 MPLS:Multiprotocol Label Switching,多协议标签交换骨干网技术。主要应用:VPN、流量工程…...
【RV1126】Ubuntu22.04下sdk编译问题汇集
对于新版本Ubuntu系统来编译SDK,尤其是buildroot ,是一个巨大考验,发现问题如下: 1. c-stack.c的SIGSTKSZ错误 buildroot 报错:c-stack.c:55:26:error:missing binary operator before token “(“55 在buildroot目录中找到c-s…...
51单片机使用uart串口和助手简单调试
基础知识 参考 特殊功能寄存器PCON(控制波特率是否加倍SMOD)、TMOD(T0,T1计时器的功能方式)、TCON(T0,T1计时器的控制)、串口中断、SCON(串口数据控制寄存器) 关闭定时器1中断&…...
Python网络爬虫(五):b站弹幕
上一篇对b站的视频评论爬取进行了探讨,这一篇是弹幕。直接上代码: import csv import json import re import chardet import requestsheaders = {user-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Saf…...
Docker环境安装Postgresql数据库Posrgresql 15.6
宿主机是ubuntu 22.04版本 ubuntu宿主机上安装docker,参见官方文档https://docs.docker.com/engine/install/ubuntu/, docker-ce是社区版 docker-ee是企业版 1、检查Docker是否安装 rootODS1SPGOFSDEV:~# docker Command docker not found, but can be installed …...
当代软件专业大学生与青年在新质生产力背景下的发展探究
在新质生产力的浪潮中,信息技术以前所未有的速度革新,为软件专业的大学生和青年带来了丰富的机遇,同时也伴随着一系列的挑战。他们如何把握时代的脉搏,实现个人的发展,成为了值得深入探讨的话题。 一、新质生产力背景下的机遇 随着新质生产力的不断发展,信息技术在各个领…...
MATLAB——知识点备忘
最近在攻略ADC建模相关方面,由好多零碎的知识点,这里写个备忘录。 Matlab 判断一个数是否为整数 1. isinteger 函数 MATLAB中,可以使用 isinteger 函数来判断一个数是否为整数,例如:要判断x是否为整数可以采用以下代…...
C++入门(以c为基础)——学习笔记2
1.引用 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间。在语法层面,我们认为它和它引用的变量共用同一块内存空间。 可以取多个别名,也可以给别名取别名。 b/c/d本质都是别名&#…...
设计模式-单例模式(懒汉式)
1. 概念 保证一个类只有一个实例并为该实例提供一个全局唯一的访问节点 2. 懒汉式-方式一 2.1 代码示例(方式一) 示例 public class Singleton03 {/*** 构造器私有化*/private Singleton03() {}/*** 成员变量*/private static Singleton03 INSTANCE;…...
算法| ss 回溯
39.组合总数46.全排列—478.子集79.单词搜索—1连续差相同的数字—1 39.组合总数 /*** param {number[]} candidates* param {number} target* return {number[][]}*/ // 思路 // dfs传参,传idx, 剩余target // dfs返回: 0 收集,…...
基于R语言绘制-散点小提琴图
原文链接:R语言绘图 | 散点小提琴图 本期教程 写在前面 本期的图形来自发表在Nature期刊中的文章,这样的基础图形在日常分析中使用频率较高。 获得本期教程数据及代码,后台回复关键词:20240405 绘图 设置路径 setwd("You…...
Arduino开发 esp32cam+opencv人脸识别距离+语音提醒
效果图 低于20厘米语音提醒字体变红 Arduino代码 可直接复制使用(修改自己的WIFI) #include <esp32cam.h> #include <WebServer.h> #include <WiFi.h> // 设置要连接的WiFi名称和密码 const char* WIFI_SSID "gumou"; const char* …...
LeNet卷积神经网络
文章目录 简介conv2d网络层的结构 简介 它是最早发布的卷积神经网络之一 conv2d 这个卷积成的参数先进行介绍一下: self.conv1 nn.Conv2d(in_channels3, out_channels10, kernel_size3, stride1, padding1)先看一下in_channels 输入的通道数,out_cha…...
Python常用算法思想--回溯算法思想详解【附源码】
通过回溯算法解决“组合”问题、“排序”问题、“搜索”之八皇后问题、“子集和”之0-1背包问题、字符串匹配等六个经典案例进行介绍: 一、解决“组合”问题 从给定的一组元素中找到所有可能的组合,这段代码中的 backtrack_combinations 函数使用了回溯思想,调用 backtrack…...
Day5-Hive的结构和优化、数据文件存储格式
Hive 窗口函数 案例 需求:连续三天登陆的用户数据 步骤: -- 建表 create table logins (username string,log_date string ) row format delimited fields terminated by ; -- 加载数据 load data local inpath /opt/hive_data/login into table log…...
01 计算机网络发展与分类
计算机网络:计算机技术与通信技术的结合。 阶段一:早期网络:ARPAnet。 阶段二:厂商独立发展阶段 阶段三:标准化阶段:ISO,TCP/IP 计算机网络分类 计算机网络分类1:通信子网和资源子网 通信子…...
ubuntu安装sublime3并设置中文
安装Sublime Text 3 在Ubuntu上安装Sublime Text 3可以通过以下步骤进行: 打开终端。 导入Sublime Text 3的GPG密钥: wget -qO- https://download.sublimetext.com/sublimehq-pub.gpg | sudo apt-key add - 添加Sublime Text 3的存储库: …...
python调用阿里云短信配置
1. 新增资质和签名 # 访问地址: https://dysms.console.aliyun.com/domestic/text/qualification2. 静静等待几十分钟~~~ 3. 通过sdk去调用,查看有没有python的sdk https://next.api.aliyun.com/api/Dysmsapi/2017-05-25/SendSms?完整代码 # -*- cod…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
