当前位置: 首页 > news >正文

深入理解机器学习——偏差(Bias)与方差(Variance)

分类目录:《深入理解机器学习》总目录


偏差(Bias)与方差(Variance)是解释学习算法泛化性能的一种重要工具。偏差方差分解试图对学习算法的期望泛化错误率进行拆解,我们知道,算法在不同训练集上学得的结果很可能不同,即便这些训练集是来自同一个分布,对测试样本xxx,令yDy_DyD为在数据集中的标记,yyyxxx的真实标记f(x;D)f(x;D)f(x;D)为训练集DDD上学得模型fff在上的预测输出。以回归任务为例,学习算法的期望预测为:
f(x)=ED[f(x;D)]f(x)=E_D[f(x;D)]f(x)=ED[f(x;D)]
使用样本数相同的不同训练集产生的方差为:
Var(x)=ED[f(x;D)−f(x)]\text{Var}(x)=E_D[f(x;D)-f(x)]Var(x)=ED[f(x;D)f(x)]
噪声为:
ϵ2=ED[(yD−y)2]\epsilon^2=E_D[(y_D-y)^2]ϵ2=ED[(yDy)2]
期望输出与真实标记的差别称为偏差(Bias),即:
bias2(x)=(f(x)−y)2\text{bias}^2(x)=(f(x) - y)^2bias2(x)=(f(x)y)2
为便于讨论,假定噪声期望为零,即ED[(yD−y)]=0E_D[(y_D-y)]=0ED[(yDy)]=0。通过简单的多项式展开合并,可对算法的期望泛化误差进行分解:
ED[(f(x;D)−yD)2]=ED[(f(x;D)−fˉ(x)+fˉ(x)−yD)2]=ED[(f(x;D)−fˉ(x)]+(fˉ(x)−y)2+ED[(yD−y)2]=bias2(x)+Var(x)+ϵ2\begin{align*} E_D[(f(x; D) - y_D)^2] &= E_D[(f(x; D) - \bar{f}(x) + \bar{f}(x) - y_D)^2]\\ &= E_D[(f(x; D) - \bar{f}(x)] + (\bar{f}(x) - y)^2 + E_D[(y_D - y)^2]\\ &= \text{bias}^2(x) + \text{Var}(x) + \epsilon^2 \end{align*} ED[(f(x;D)yD)2]=ED[(f(x;D)fˉ(x)+fˉ(x)yD)2]=ED[(f(x;D)fˉ(x)]+(fˉ(x)y)2+ED[(yDy)2]=bias2(x)+Var(x)+ϵ2
也就是说,泛化误差可分解为偏差、方差与噪声之和。回顾偏差、方差、噪声的含义:偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响;噪声则表达了在当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度。偏差方差分解说明,泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的。给定学习任务,为了取得好的泛化性能,则需使偏差较小,即能够充分拟合数据,并且使方差较小,即使得数据扰动产生的影响小一般来说,偏差与方差是有冲突的,这称为偏差方差窘境(Bias-Variance Dilemma)。下图给出了一个示意图。给定学习任务,假定我们能控制学习算法的训练程度,则在训练不足时,学习器的拟合能力不够强,训练数据的扰动不足以使学习器产生显著变化,此时偏差主导了泛化错误率;随着训练程度的加深,学习器的拟合能力逐渐增强,训练数据发生的扰动渐渐能被学习器学到,方差逐渐主导了泛化错误率:在训练程度充足后,学习器的拟合能力已非常强,训练数据发生的轻微扰动都会导致学习器发生显著变化,若训练数据自身的、非全局的特性被学习器学到了,则将发生过拟合,
偏差与方差

参考文献:
[1] 周志华. 机器学习[M]. 清华大学出版社, 2016.

相关文章:

深入理解机器学习——偏差(Bias)与方差(Variance)

分类目录:《深入理解机器学习》总目录 偏差(Bias)与方差(Variance)是解释学习算法泛化性能的一种重要工具。偏差方差分解试图对学习算法的期望泛化错误率进行拆解,我们知道,算法在不同训练集上学…...

分布式新闻项目实战 - 13.项目部署_持续集成(Jenkins) ^_^ 完结啦 ~

欲买桂花同载酒,终不似,少年游。 系列文章目录 项目搭建App登录及网关App文章自媒体平台(博主后台)自媒体文章审核延迟任务kafka及文章上下架App端文章搜索后台系统管理Long类型精度丢失问题定时计算热点文章(xxl-Job…...

Linux c/c++技术方向分析

一、C与C介绍 1.1 说明 c语言是一门面向过程的、抽象化的通用程序设计语言,广泛应用于底层开发,如嵌入式。C语言能以简易的方式编译、处理低级存储器。是一种高效率程序设计语言。 c(c plus plus)是一种计算机高级程序设计语言&a…...

JavaScript 高级3 :函数进阶

JavaScript 高级3 :函数进阶 Date: January 19, 2023 Text: 函数的定义和调用、this、严格模式、高阶函数、闭包、递归 目标: 能够说出函数的多种定义和调用方式 能够说出和改变函数内部 this 的指向 能够说出严格模式的特点 能够把函数作为参数和返…...

【项目】Java树形结构集合分页,java对list集合进行分页

Java树形结构集合分页需求难点实现第一步:查出所有树形集合数据 (需进行缓存处理)selectTree 方法步骤:TreeUtil类:第二步:分页 GoodsCategoryController分页getGoodsCategoryTree方法步骤:第三…...

java.lang.IllegalArgumentException: itemView may not be null

报错截图:场景介绍:在使用recycleView 自动递增数据,且自动滚动到最新行; 当数据达到273条 时出现ANR;项目中 全部的列表适配器使用的三方库:BaseRecyclerViewAdapterHelper (很早之前的项目&am…...

[ 攻防演练演示篇 ] 利用 shiro 反序列化漏洞获取主机权限

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

达人合作加持品牌布局,3.8女神玩转流量策略!

随着迅猛发展的“她经济”,使社区本就作为内容种草的平台,自带“营销基因”。在3.8女神节即将到来之际,如何充分利用平台女性资源优势,借助达人合作等手段,实现迅速引流,来为大家详细解读下。一、小红书节日…...

观点丨Fortinet谈ChatGPT火爆引发的网络安全行业剧变

FortiGuard报告安全趋势明确指出“网络攻击者已经开始尝试AI手段”,ChatGPT的火爆之际的猜测、探索和事实正在成为这一论断的佐证。攻守之道在AI元素的加持下也在悄然发生剧变。Fortinet认为在攻击者利用ChatGPT等AI手段进行攻击的无数可能性的本质,其实…...

工业企业用电损耗和降损措施研究

来自用电设备和供配电系统的电能损耗。而供配电系统的电能损耗,包括企业变配电设备、控制设备企业在不断降低生产成本,追求经济效益的情况下,进一步降低供配电系统中的电能损耗,使电气设摘要:电网电能损耗是一个涉及面很广的综合性问题,主要包括管理损耗和技术损耗两部分…...

高并发、高性能、高可用

文章目录一、高并发是什么?二、 高性能是什么三、 高可用什么是一、高并发是什么? 示例:高并发是现在互联网分布式框架设计必须要考虑的因素之一,它是可以保证系统能被同时并行处理很多请求,对于高并发来说&#xff0…...

剑指 Offer 62. 圆圈中最后剩下的数字

摘要 剑指 Offer 62. 圆圈中最后剩下的数字 一、约瑟夫环解析 题目中的要求可以表述为:给定一个长度为 n 的序列,每次向后数 m 个元素并删除,那么最终留下的是第几个元素?这个问题很难快速给出答案。但是同时也要看到&#xff…...

概率论小课堂:高斯分布(正确认识大概率事件)

文章目录 引言I 预备知识1.1 正态分布1.2 置信度1.3 风险II 均值、标准差和发生概率三者的关系。2.1 “三∑原则”2.2 二班成绩比一班好的可能性2.3 减小标准差引言 泊松分布描述的是概率非常小的情况下的统计规律性。学习高斯分布来正确认识大概率事件,随机变量均值的差异和偶…...

剑指 Offer 43. 1~n 整数中 1 出现的次数

摘要 剑指 Offer 43. 1~n 整数中 1 出现的次数 一、数学思维解析 将1~ n的个位、十位、百位、...的1出现次数相加,即为1出现的总次数。 设数字n是个x位数,记n的第i位为ni​,则可将n写为 nxnx−1⋯n2n1: 称" …...

如何成为程序员中的牛人/高手?

目录 一、牛人是怎么成为牛人的? 二、关于牛人的一点看法 三、让程序员与业务接壤,在开发团队中“升级” 四、使用低代码平台 目标效果 五、最后 祝伟大的程序员们梦想成真、码到成功! 一、牛人是怎么成为牛人的? 最近在某…...

云原生时代顶流消息中间件Apache Pulsar部署实操之轻量级计算框架

文章目录Pulsar Functions(轻量级计算框架)基础定义工作流程函数运行时处理保证和订阅类型窗口函数定义窗口类型滚动窗口滑动窗口函数配置函数示例有状态函数示例窗口函数示例自定义函数开发定义原生语言接口示例Pulsar函数SDK示例Pulsar Functions(轻量级计算框架) 基础定义 …...

数据结构刷题(十九):77组合、216组合总和III

1.组合题目链接过程图:先从集合中取一个数,再依次从剩余数中取k-1个数。思路:回溯算法。使用回溯三部曲进行解题:递归函数的返回值以及参数:n,k,startIndex(记录每次循环集合从哪里开始遍历的位…...

PyQt 做美*女GIF设置桌面,每天都很爱~

人生苦短,我用python 要说程序员工作的最大压力不是来自于工作本身, 而是来自于需要不断学习才能更好地完成工作, 因为程序员工作中面对的编程语言是在不断更新的, 同时还要学习熟悉其他语言来提升竞争力… 好了,学习…...

[渗透测试笔记] 54.日薪2k的蓝队hw中级定级必备笔记系列篇3之域渗透黄金票据和白银票据

前文链接 [渗透测试笔记] 52.告别初级,日薪2k的蓝队hw中级定级必备笔记 [渗透测试笔记] 53.日薪2k的蓝队hw中级定级必备笔记2 文章目录 Kerberos认证协议NTLM认证协议Kerberos和NTLM比较黄金票据原理黄金票据条件复现过程白银票据原理白银票据条件复现过程黄金票据和白银票据…...

【异常】Spring Cloud Gateway网关自定义过滤器无法获取到请求体body的内容?不存在的!

一、需求说明 项目要使用到网关SpringCloud Gateway进行验签,现在定义了一个过滤器ValidateSignFilter, 我希望,所以过网关SpringCloud Gateway的请求,都能够校验一下请求头,看看是否有Sign这个字段放在请求头中。 二、异常说明 但是,我遇到了SpringCloud Gateway网关…...

CNN 卷积神经网络对染色血液细胞分类(blood-cells)

目录 1. 介绍 2. 加载数据 3. 可视化 3.1 显示单幅图像 3.2 显示多幅图像...

Kubernetes学习(三)Service

Service对象 为什么需要Service 每个Pod都有自己的IP地址,但是在Deployment中,在同一时刻运行的Pod集合可能与稍后运行该应用程序的Pod集合不同。 这就导致了一个问题:如果一组Pod(称为后端)为集群内其他Pod&#x…...

数学小课堂:古德-图灵折扣估计法和插值法(防范黑天鹅事件的方法)

文章目录 引言I 黑天鹅事件产生的原因1.1 置信度1.2 数据的稀疏性1.3 零概率问题II 防范黑天鹅事件的方法2.1 古德-图灵折扣估计法2.2 插值法引言 防范黑天鹅事件的方法 古德-图灵折扣估计法:它主要是解决零概率的事件古德的方法虽然解决了零概率的问题,但是依然没有解决数据…...

redis getshell方法

前言 参考文章 https://paper.seebug.org/1169 https://blog.csdn.net/weixin_55843787/article/details/123829606 https://blog.csdn.net/chenglanqi6606/article/details/100909518 Redis是什么 Redis是一款基于键值对的NoSQL数据库,它的值支持多种数据结构 …...

【ONE·C || 程序编译简述】

总言 C语言:程序编译相关。    文章目录总言1、程序的翻译环境和运行环境1.1、简述1.2、翻译环境:程序编译与链接1.2.1、简介:程序如何从.c文件形成.exe可执行程序1.2.2、过程说明1.3、运行环境2、预处理详解2.1、预定义符号2.2、#define2.…...

MGAT: Multimodal Graph Attention Network for Recommendation

模型总览如下: 图1:多模态图注意力网络背景:本论文是对MMGCN(Wei et al., 2019)的改进。MMGCN简单地在并行交互图上使用GNN,平等地对待从所有邻居传播的信息,无法自适应地捕获用户偏好。 MMGCN…...

在SNAP中用sentinel-1数据做InSAR测量,以门源地震为例

在SNAP中用sentinel-1数据做InSAR0 写在前面1 数据下载2 处理步骤2.1 split2.2 apply orbit 导入精密轨道2.3 查看数据的时空基线base line2.4 back-geocoding 配准2.5 Enhanced Spectral Diversity2.6 Deburst2.7 Interogram Formation 生成干涉图2.8 Multilook 多视2.9 Golds…...

MySQL常用函数

什么是函数? 函数是指一段可以直接被另一段程序调用的程序或代码。 字符串函数 函数功能CONCAT(S1,S2,…Sn)字符串拼接,将S1,S2,… Sn拼接成一个字符串LOWER(str)将字符串str全部转为小写LOWER(str)将字符串str全部转为小写LPAD(…...

51单片机数字电子钟开题报告

目录 选题背景 初步设计方案 芯片的选型 编译环境 关键问题 策略 方案 参考文献 选题背景 数字电子钟是一种受到越来越多人喜爱的钟表,其准确性和稳定性成为设计和研发的重要考虑因素。在现代社会,时间的准确性对于各行各业都非常重要&#xff0…...

day7 HTTP协议

HTTP协议 什么是协议? 协议实际上是某些人,或者某些组织提前制定好的一套规范,大家都按照这个规范来,这样可以做到沟通无障碍。协议就是一套规范,就是一套标准。由其他人或其他组织来负责制定的。我说的话你能听懂&…...

做网站怎么添加关键词/东莞网络推广

1、配置文件 2、调用 有两种使用方式 1)如果需要以固定速率执行,只要将注解中指定的属性名称改成fixedRate即可,以下方法将以一个固定速率5s来调用一次执行,这个周期是以上一个任务开始时间为基准,从上一任务开始执行后5s再次调…...

寿光市建设局网站/合肥网站维护公司

各位志同道合的朋友们大家好,我是一个一直在一线互联网踩坑十余年的编码爱好者,现在将我们的各种经验以及架构实战分享出来,如果大家喜欢,就关注我,一起将技术学深学透,我会每一篇分享结束都会预告下一专题…...

网站开发所得税/爱战网官网

题目链接 链接&#xff1a;https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/description/ 题解&代码 1、暴力枚举所有的情况&#xff0c;时间复杂度O(n^2*m^2)&#xff0c;实际耗时759 ms class Solution { public:int maxSumSubmatrix(vector<ve…...

网站建设专业学什么/搜索引擎优化服务

chidNodes返回的是node的集合&#xff0c;每个node都包含有nodeType属性。 nodeType取值&#xff1a; 元素节点&#xff1a;1 属性节点&#xff1a;2 文本节点&#xff1a;3 注释节点&#xff1a;8页面上是由无数个节点组成&#xff0c;节点分成元素节点、属性节点、文本节点、…...

把网站提交给百度/推广联盟平台

背景&#xff1a; 博客中将构建一个小示例&#xff0c;用于演示在ASP.NET MVC4项目中&#xff0c;如何使用JQuery Ajax。 直接查看JSon部分 步骤&#xff1a; 1&#xff0c;添加控制器(HomeController)和动作方法(Index),并为Index动作方法添加视图(Index.cshtml),视图中HTML如…...

湖北可以做网站方案的公司/最新新闻消息

2019独角兽企业重金招聘Python工程师标准>>> 由于网络原因&#xff0c;我们在pull Image 的时候&#xff0c;从Docker Hub上下载会很慢。。。所以&#xff0c;国内的Docker爱好者们就添加了一一些国内的镜像&#xff08;mirror&#xff09;,方便大家使用。 登录阿里…...