当前位置: 首页 > news >正文

wordvect嵌入和bert嵌入的区别

Word2Vec 嵌入和 BERT 嵌入之间有几个关键区别:

  1. 训练方式

    • Word2Vec:Word2Vec 是一个基于神经网络的词嵌入模型,它通过训练一个浅层的神经网络来学习单词的分布式表示。它有两种训练方式:连续词袋模型(CBOW)和Skip-gram 模型,分别通过预测上下文词汇或者预测目标词汇来学习单词嵌入。
    • BERT:BERT 是一种基于 Transformer 架构的预训练语言模型。它通过使用大规模的无标注文本数据来进行预训练,通过掩盖和预测输入句子中的一部分来学习上下文感知的单词嵌入。
  2. 上下文感知性

    • Word2Vec:Word2Vec 嵌入是基于局部窗口上下文的,每个单词的嵌入只考虑了它周围的几个单词,因此它们可能无法捕捉到单词的整体语义和上下文信息。
    • BERT:BERT 嵌入是基于整个句子的上下文来计算的,它能够更好地理解单词在句子中的语义和语境。BERT 使用双向 Transformer 模型来同时考虑一个单词左侧和右侧的上下文信息,因此能够更全面地捕捉单词的含义。
  3. 任务特定性

    • Word2Vec:Word2Vec 嵌入通常用于各种自然语言处理任务的特征表示,例如文本分类、命名实体识别等,但它们通常需要在特定任务上进行微调以获得最佳性能。
    • BERT:BERT 嵌入经过大规模预训练,通常可以直接用于各种下游任务,例如文本分类、命名实体识别、问答等,而且通常不需要太多的微调即可获得很好的性能。

下面是使用 Python 中的 Gensim 库来展示 word2vec 和 Hugging Face Transformers 库来展示 BERT 的示例代码:

Word2Vec 嵌入示例:

# 导入所需的库
from gensim.models import Word2Vec
from gensim.models.keyedvectors import KeyedVectors# 假设有一个句子列表作为训练数据
sentences = [["I", "love", "natural", "language", "processing"],["Word", "embeddings", "are", "useful", "for", "NLP"],["Word2Vec", "is", "a", "popular", "word", "embedding", "technique"]]# 训练 Word2Vec 模型
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)# 获取单词 "word" 的词向量表示
word_vector = model.wv["word"]
print("Word2Vec Embedding for 'word':", word_vector)

BERT 嵌入示例:

# 导入所需的库
from transformers import BertTokenizer, BertModel
import torch# 加载 BERT tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')# 假设有一个句子
sentence = "Word embeddings are useful for NLP"# 使用 BERT tokenizer 对句子进行标记化和编码
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)# 加载 BERT 模型
model = BertModel.from_pretrained('bert-base-uncased')# 获取 BERT 嵌入
with torch.no_grad():outputs = model(**inputs)# 提取句子中每个 token 的嵌入表示
embeddings = outputs.last_hidden_state
# 提取第一个 token 的嵌入表示([CLS] 标记)
bert_embedding = embeddings[:, 0, :]
print("BERT Embedding for the sentence:", bert_embedding)

这里,Word2Vec 通过简单的神经网络训练得到词向量,而 BERT 是一个预训练的深度双向 Transformer 模型,在给定任务的基础上进行微调以获得更好的嵌入表示。Word2Vec 产生的向量通常具有相似含义的单词在空间中彼此靠近,而 BERT 的嵌入则更具有上下文感知性,可以更好地捕捉句子中的语义和语境。

相关文章:

wordvect嵌入和bert嵌入的区别

Word2Vec 嵌入和 BERT 嵌入之间有几个关键区别: 训练方式: Word2Vec:Word2Vec 是一个基于神经网络的词嵌入模型,它通过训练一个浅层的神经网络来学习单词的分布式表示。它有两种训练方式:连续词袋模型(CBOW…...

渗透测试练习题解析 5(CTF web)

1、[安洵杯 2019]easy_serialize_php 1 考点:PHP 反序列化逃逸 变量覆盖 【代码审计】 通过 GET 的方式获取参数 f 的值,传递给变量 function 定义一个过滤函数,过滤掉特定字符(用空字符替换) 下面的代码其实没什么用…...

PCA(Principal Component Analysis,主成分分析)

PCA(Principal Component Analysis,主成分分析)是一种在数据分析中广泛应用的统计方法,主要用于数据降维、可视化和去噪。以下是对PCA的发展史、工作原理以及理论基础的详细解释: Principal Component Analysis 一、PC…...

干货 | 探索CUTTag:从样本到文库,实验步步为营!

CUT&Tag(Cleavage Under Targets and Tagmentation)是一种新型DNA-蛋白互作研究技术,主要用于研究转录因子或组蛋白修饰在全基因组上的结合或分布位点。相比于传统的ChIP-seq技术,CUT&Tag反应在细胞内进行,创新…...

提质不增本,降本不降质

#公益巡讲# #质量万里行# 公开课、沙龙活动...

数据结构---顺序表实现

目录 1.顺序表 2.动态顺序表的实现 (4)顺序表初始化 (5)顺序表销毁 (6)顺序表的插入 a.尾插 b.头插 (7)顺序表的删除 a.尾删 b.头删 (8)指定位置之…...

python docx 添加动态表格

在Python中,使用python-docx库可以创建Word文档并添加动态表格。以下是一个简单的例子,演示如何创建一个包含动态内容的表格: from docx import Document# 创建一个Word文档 document Document()# 添加一个标题 document.add_heading(动态表…...

git配置多SSH

目的: 一台电脑可以让github、gitee等账号同时存在,让不同账号配置不同的密钥 第一步:创建不同平台的SSH公钥 执行命令: ssh-keygen -t rsa -C "对应仓库邮箱地址" -f ~/.ssh/id_rsa.github 如果执行上面的命令&…...

IDEA连接SqlServer数据库

目录 下载jar包 下载sqljdbc_12.6压缩包 解压 导入IDEA 新建文件夹 复制粘贴进JDBC文件夹并设为library 编写类及方法 代码 下载jar包 以sqljdbc_12.6为例 下载sqljdbc_12.6压缩包 最新地址:sqljdbc 官方最新地址 解压 解压即用 导入IDEA 新建文件夹 复制…...

LeetCode 378 有序矩阵中第K小的元素

题目信息 LeetoCode地址: . - 力扣(LeetCode) 题解内容大量转载于:. - 力扣(LeetCode) 题目理解 题意很直观,就是求二维矩阵中所有元素排序后第k小的数。 最小堆写法 该写法不再赘述,维护…...

Vue3(domdiff)最长递归子序列求解简易版(超简单)

Vue3(domdiff)最长递归子序列求解简易版 ⚠️ 关键词(每一个都需要理解)js 代码实现写完感想欢迎关注 ⚠️ 关键词(每一个都需要理解) 动态规划(O(N^2))(不提倡&#xf…...

LLaMA-Factory+qwen多轮对话微调

LLaMA-Factory地址:https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md qwen地址:https://huggingface.co/Qwen/Qwen-7B-Chat/tree/main 数据准备 数据样例 [ {"id": "x3959", "conversations": [{&qu…...

邦芒面试:如何在面试中巧妙回答自己的缺点

在面试中,被问及自己的缺点时,如何巧妙回答是一门学问。恰当的回答不仅能够展示你的自我认知,还能让面试官看到你的成长潜力和积极态度。 首先,切忌谈一些看似缺点实则优点的话题,如追求完美、待人接物太客气等。这些…...

Android:身份证识别功能实现

说明&#xff1a; 此文使用华为SDK、百度SDK、百度在线API三种方式实现。 一、使用华为SDK实现身份证识别&#xff1a; 说明&#xff1a;免费&#xff0c;不需要联网。 1.AndroidManifest.xml添加权限&#xff1a;<uses-permission android:name"android.permissio…...

MacOS安装Homebrew教程

安装 Homebrew 是在 macOS 上管理软件包的一种简便方法。以下是安装 Homebrew 的步骤&#xff1a; 打开终端&#xff1a;你可以通过在 Spotlight 搜索栏中输入“终端”并按下回车键来打开 macOS 的终端应用程序。 执行安装命令&#xff1a;在终端中粘贴以下命令并按下回车键执…...

laravel如何通过DB获取一条数据并转成数组

在 Laravel 中&#xff0c;你可以使用原生数据库查询构建器&#xff08;DB facade&#xff09;来获取一条数据&#xff0c;并将其转换为数组。这可以通过在查询链的末尾调用 first() 方法后&#xff0c;使用 toArray() 方法来实现。first() 方法会返回一个 StdClass 对象&#…...

ENSP USG防火墙接入虚拟机;开启Web访问;

1.添加防火墙及云&#xff0c;启动防火墙&#xff1b; 2.配置桥接网卡&#xff1b; 默认账户&#xff1a;admin 默认密码&#xff1a;Admin123 #第一次登陆需修改密码&#xff1b; 默认G0/0/0口为管理口&#xff0c;而在模拟器中进入防火墙的web需如下配置&#xff1a; 配置 …...

数据结构算法题(力扣)——链表

以下题目建议大家先自己动手练习&#xff0c;再看题解代码。这里只提供一种做法&#xff0c;可能不是最优解。 1. 移除链表元素&#xff08;OJ链接&#xff09; 题目描述&#xff1a;给一个链表的头节点 head 和一个整数 val &#xff0c;删除链表中所有满足值等于 val 的节点…...

LeetCode---391周赛

题目列表 3099. 哈沙德数 3100. 换水问题 II 3101. 交替子数组计数 3102. 最小化曼哈顿距离 一、哈沙德数 简单的模拟题&#xff0c;代码如下 class Solution { public:int sumOfTheDigitsOfHarshadNumber(int x) {int s 0, tmp x;while(tmp){stmp%10;tmp/10;}return x…...

微信小程序的页面交互2

一、自定义属性 &#xff08;1&#xff09;定义&#xff1a; 微信小程序中的自定义属性实际上是由data-前缀加上一个自定义属性名组成。 &#xff08;2&#xff09;如何获取自定义属性的值&#xff1f; 用到target或currentTarget对象的dataset属性可以获取数据 &#xff…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...