【MATLAB源码-第185期】基于matlab的16QAM系统相位偏移估计EOS算法仿真,对比补偿前后的星座图误码率。
操作环境:
MATLAB 2022a
1、算法描述
1. 引言
M-QAM调制技术的重要性
现代通信系统追求的是更高的数据传输速率和更有效的频谱利用率。M-QAM调制技术,作为一种高效的调制方案,能够通过在相同的带宽条件下传输更多的数据位来满足这一需求。M-QAM通过调整信号的幅度和相位来编码信息,使得每个符号能够携带多个比特信息,从而大幅度提高了数据传输速率。
相偏的影响
然而,M-QAM系统的性能受到多种因素的影响,其中相偏是一个重要的技术挑战。相偏可以由多种原因引起,包括硬件缺陷、信号传输过程中的失真等。它会导致接收信号的相位与预期的相位出现偏差,从而使得解调后的数据出现错误,降低系统的传输质量和可靠性。
EOS算法的引入
为了解决相偏问题,EOS算法被提出并应用于相偏的估计和校正。EOS算法能够在不需要先验信息的情况下,通过分析接收信号的统计特性来估计相偏角度。这种盲相位搜索方法为M-QAM系统的相偏校正提供了一种有效的解决方案。
2. M-QAM调制技术概述
基本原理
M-QAM调制通过在两个正交的载波上调制信号,同时利用幅度和相位的变化来编码信息。这种调制技术能够在保持带宽不变的情况下传输大量数据,因为它将信息编码到每个符号的幅度和相位上,而每个符号可以表示多个比特。随着M值的增加,系统的数据传输速率也随之增加,但相应地,系统对信噪比的要求也更高,因为符号间的区分度减小。
星座图
M-QAM的星座图是一个用于表示所有可能符号的图形,其中每个符号都由其幅度和相位唯一确定。在理想条件下,这些符号在星座图上均匀分布。然而,在实际通信系统中,由于噪声、相偏等因素的影响,接收到的符号可能会从其理想位置偏离,导致符号判决错误。
3. 相偏的来源与影响
相偏产生的原因
相偏可以由多种原因引起,包括但不限于:
- 硬件缺陷,如振荡器的不稳定性;
- 信号传输过程中的失真,如非线性失真、多径传播效应;
- 环境因素,如温度变化导致的设备性能波动。
相偏对系统性能的影响
相偏会导致接收信号的相位与发送信号的相位不匹配,从而使得解调后的数据出现错误。在M-QAM调制系统中,即使是较小的相偏也可能导致严重的符号错误,特别是在高阶M-QAM系统中,符号间的距离更小,系统对相偏更为敏感。
4. EOS算法原理
算法概述
EOS算法通过分析接收信号的四次统计量来估计相偏角度。该算法不依赖于传输的数据或额外的相位参考信号,因此被称为盲相位搜索方法。通过计算接收信号的四次幂和二次幂统计量,并利用这些统计量之间的关系,EOS算法能够估计出相偏角度。
数学模型
EOS算法的数学模型基于接收信号的高阶统计特性。算法首先计算接收信号的四次幂和二次幂统计量,然后通过这些统计量计算出与相偏相关的参数。最后,利用这些参数通过数学推导估计出相偏角度。
算法步骤
- 计算接收信号的四次幂和二次幂统计量;
- 根据统计量计算与相偏相关的参数;
- 利用相关参数估计相偏角度;
- 根据估计的相偏角度对信号进行校正。
5. EOS算法的MATLAB实现
信号生成与相偏模拟
使用MATLAB代码生成M-QAM信号,并模拟相偏的影响。这一步骤涉及到信号的调制、相偏的添加以及信号的噪声模拟。
相偏估计与校正
提供MATLAB代码实现EOS算法的核心步骤,包括相偏的估计和信号的校正。代码应包含详细的注释,解释每一步的功能和目的。
6. 性能评估
仿真设置
描述用于评估EOS算法性能的仿真设置,包括信噪比范围、相偏大小、以及M-QAM调制阶数等参数。
结果分析
展示EOS算法在不同条件下的性能,包括相偏估计的准确性、校正后信号的质量以及系统的误码率等。使用图表和图形直观地展示仿真结果,并对结果进行分析和讨论。
2、仿真结果演示


3、关键代码展示
略
4、MATLAB 源码获取
V
点击下方名片
相关文章:
【MATLAB源码-第185期】基于matlab的16QAM系统相位偏移估计EOS算法仿真,对比补偿前后的星座图误码率。
操作环境: MATLAB 2022a 1、算法描述 1. 引言 M-QAM调制技术的重要性 现代通信系统追求的是更高的数据传输速率和更有效的频谱利用率。M-QAM调制技术,作为一种高效的调制方案,能够通过在相同的带宽条件下传输更多的数据位来满足这一需求…...
C++入门语法(命名空间缺省函数函数重载引用内联函数nullptr)
目录 前言 1. 什么是C 2. C关键字 3. 命名空间 3.1 命名空间的定义 3.2 命名空间的使用 4. C输入和输出 5. 缺省函数 5.1 概念 5.2 缺省参数分类 6. 函数重载 6.1 概念 6.2 为何C支持函数重载 7. 引用 7.1 概念 7.2 特性 7.3 常引用 7.4 引用与指针的区别 7…...
9.vector的使用介绍和模拟实现
1.vector的介绍及使用 1.1 vector的介绍 vector的文档介绍 vector是表示可变大小数组的序列容器。 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,…...
探索设计模式的魅力:MVVM模式在AI大模型领域的创新应用-打破传统,迎接智能未来
🌈 个人主页:danci_ 🔥 系列专栏:《设计模式》 💪🏻 制定明确可量化的目标,坚持默默的做事。 MVVM模式在AI大模型领域的创新应用-打破传统迎接智能未来 🚀 “在人工智能的领域里&a…...
Docker使用— Docker部署安装Nginx
Nginx简介 Nginx 是一款高性能的 web 服务器、反向代理服务器以及电子邮件(IMAP/POP3/SMTP)代理服务器,由俄罗斯开发者伊戈尔塞索耶夫(Igor Sysoev)编写,并在2004年10月4日发布了首个公开版本0.1.0。Nginx…...
C/C++基础----运算符
算数运算符 运算符 描述 例子 两个数字相加 两个变量a b得到两个变量之和 - 两个数字相减 - * 两个数字相乘 - / 两个数字相除 - % 两个数字相除后取余数 8 % 3 2 -- 一个数字递减 变量a:a-- 、--a 一个数字递增 变量a: a 、 a 其中递…...
YOLOv9:下一代目标检测的革新
目标检测作为计算机视觉领域的一个重要分支,一直是研究的热点。YOLO系列作为目标检测算法的佼佼者,自YOLO1发布以来,就在速度和精度上取得了很好的平衡,深受业界和学术界的喜爱。 YOLOv9作为该系列的最新版本,不仅在性…...
Leetcode算法训练日记 | day20
一、合并二叉树 1.题目 Leetcode:第 617 题 给你两棵二叉树: root1 和 root2 。 想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新…...
conda创建虚拟环境太慢,Collecting package metadata (current_repodata.json): failed
(省流版:只看加粗红色,末尾也有哦) 平时不怎么用conda,在前公司用服务器的时候用的是公司的conda源,在自己电脑上直接用python创建虚拟环境完事儿,所以对conda的配置并不熟悉~~【狗头】。但是python虚拟环境的最大缺点…...
Tensorflow(GPU版本配置)一步到位!!!
Tensorflow(GPU版本配置)一步到位!!! CUDA安装CUDA配置Tensorflow配置常见的包 CUDA安装 配置了N次的Tensorflow–Gpu版本,完成了踩坑,这里以配置Tensorflow_gpu 2.6.0为例子进行安装 以下为ten…...
STL之map
CSTL之map 1.介绍 map是映射的意思,即每个x对应一个y,我们这里说成key和value 举例子说明:运动->篮球 (运动是key,篮球是value)用电脑->写代码 (用电脑是key,写代码是value)…...
闲谈2024(一)
时光飞逝,一转眼24年的第一个季度已经过去了,回望这3个多月,感触颇多。首先,24年从一个一心只读圣贤书,全身心投入在技术上的研发工程师,转变为一个团队的小leader。从我个人对自己的定位来说,我…...
SQL注入利用 学习- 布尔盲注
布尔盲注适用场景: 1、WAF或者过滤函数完全过滤掉union关键字 2、页面中不再回显具体数据,但是在SQL语句执行成功或失败返回不同的内容 代码分析:过滤关键字 union if(preg_match(/union/i, $id)) { echo "fail"; exit; } 代码…...
前端项目部署教程——有域名有证书
一、拉取nginx镜像 docker pull nginx //先拉取nginx镜像二、打包前端项目 1、将Vue打包项目传输到/usr/local/vue/下blog和admin文件夹下 重点: 每一个子域名都要申请证书,在阿里云每年可以免费申请20个证书, 免费证书申请教程在 免费证书申请教程 …...
《看漫画学C++》第12章 可大可小的“容器”——向量
在C编程的世界里,数组是一种基础且广泛使用的数据结构。然而,传统的静态数组在大小固定、管理不便等方面的局限性,常常让开发者感到束手束脚。幸运的是,C标准库中的vector类为我们提供了一种更加灵活、高效的动态数组解决方案。 …...
OpenAI推出GPTBot网络爬虫:提升AI模型同时引发道德法律争议
文章目录 一、GPTBot 简介二、功能特点三、技术细节3.1、用户代理标识3.2、数据采集规则3.3、数据使用目的3.4、网站屏蔽方法3.5、数据过滤 四、GPTBot 的道德和法律问题五、GPTBot 的使用方法和限制六、总结 一、GPTBot 简介 OpenAI 推出的网络爬虫GPTBot旨在通过从互联网上收…...
Claude使用教程
claude 3 opus面世后,网上盛传吊打了GPT-4。网上这几天也已经有了许多应用,但竟然还有很多小伙伴不知道国内怎么用gpt,也不知道怎么去用这个据说已经吊打了gpt-4的claude3。 今天我们想要进行的一项尝试就是—— 用claude3和gpt4,…...
【经典算法】LeetCode25:K 个一组翻转链表(Java/C/Python3,Hard)
#算法 目录 题目描述思路及实现方式一:递归思路代码实现Java 版本C 语言版本Python3 版本 复杂度分析 方式二:迭代和原地反转思路代码实现Java 版本C 语言版本Python3 版本 复杂度分析 总结相似题目 标签:链表、递归 题目描述 给你链表的头…...
6.11物联网RK3399项目开发实录-驱动开发之定时器的使用(wulianjishu666)
嵌入式实战开发例程【珍贵收藏,开发必备】: 链接:https://pan.baidu.com/s/1tkDBNH9R3iAaHOG1Zj9q1Q?pwdt41u 定时器使用 前言 RK3399有 12 个 Timers (timer0-timer11),有 12 个 Secure Timers(stimer0~stimer11) 和 2 个 …...
算法训练营第二十三天(二叉树完结)
算法训练营第二十三天(二叉树完结) 669. 修剪二叉搜索树 力扣题目链接(opens new window) 题目 给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>L) 。你可能需要改…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
