当前位置: 首页 > news >正文

acwing算法提高之图论--最近公共祖先

目录

  • 1 介绍
  • 2 训练

1 介绍

本博客用来记录"对于有根图中,求最近公共祖先"的题目。

求解方法:

  1. 向上标记法。每次求两个结点的最近公共祖先的时间复杂度是O(N)。由于时间复杂度较高,通常不用。
  2. 倍增法。

倍增法重要思路:预处理出两个数组fa[i][j]depth[i]。其中fa[i][j]表示从i开始,向上走2^j步所能走到的结点。0<=j<=logndepth[i]表示深度,为到根结点的距离再加上1。

哨兵:如果从i开始跳2^j步会跳过根结点,那么fa[i][j] = 0depth[0] = 0

倍增法重要步骤:

  1. 先将两个点跳到同一层。
  2. 让两个点同时往上跳,一直跳到它们的最近公共祖先的下一层。

倍增法的时间复杂度分析:预处理的时间复杂度为O(NlogN),查询的时间复杂度为O(logN)

2 训练

题目1:1172祖孙询问

C++代码如下,

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <unordered_map>using namespace std;const int N = 40010;
int n, m;
int depth[N], fa[N][16];
int ancestor;
unordered_map<int, vector<int>> g;void bfs(int root) {memset(depth, 0x3f, sizeof depth);depth[0] = 0;depth[root] = 1; queue<int> q;q.push(root);while (!q.empty()) {int a = q.front();q.pop();for (auto b : g[a]) {if (depth[b] > depth[a] + 1) {depth[b] = depth[a] + 1;q.push(b);fa[b][0] = a;for (int k = 1; k <= 15; ++k) {fa[b][k] = fa[fa[b][k-1]][k-1];}}}}return;
}int lca(int a, int b) {//倍增法if (depth[a] < depth[b]) swap(a, b);for (int k = 15; k >= 0; --k) {if (depth[fa[a][k]] >= depth[b]) {a = fa[a][k];}}if (a == b) return a;for (int k = 15; k >= 0; --k) {if (fa[a][k] != fa[b][k]) {a = fa[a][k];b = fa[b][k];}}return fa[a][0];
}int main() {cin >> n;int a, b;for (int i = 0; i < n; ++i) {cin >> a >> b;if (b == -1) {ancestor = a;} else {g[a].emplace_back(b);g[b].emplace_back(a);        }}cin >> m;vector<pair<int,int>> queries;for (int i = 0; i < m; ++i) {cin >> a >> b;queries.emplace_back(a,b);}//从根结点开始遍历bfs(ancestor);for (auto [a, b] : queries) {int x = lca(a, b);if (a == x) {puts("1");} else if (b == x) {puts("2");} else {puts("0");}}return 0;
}

题目2:1171距离

C++代码如下,


相关文章:

acwing算法提高之图论--最近公共祖先

目录 1 介绍2 训练 1 介绍 本博客用来记录"对于有根图中&#xff0c;求最近公共祖先"的题目。 求解方法&#xff1a; 向上标记法。每次求两个结点的最近公共祖先的时间复杂度是O(N)。由于时间复杂度较高&#xff0c;通常不用。倍增法。 倍增法重要思路&#xff1…...

C语言 函数——断言与防御式编程

目录 如何确定假设的真假&#xff1f; 断言 防御式编程&#xff08;Defensive programming&#xff09; 如何确定假设的真假&#xff1f; 程序中的假设 *某个特定点的某个表达式的值一定为真 *某个特定点的某个表达式的值一定位于某个区间等 问题&#xff1a;如何确定这些…...

【opencv】示例-travelsalesman.cpp 使用模拟退火算法求解旅行商问题

// 载入 OpenCV 的核心头文件 #include <opencv2/core.hpp> // 载入 OpenCV 的图像处理头文件 #include <opencv2/imgproc.hpp> // 载入 OpenCV 的高层GUI(图形用户界面)头文件 #include <opencv2/highgui.hpp> // 载入 OpenCV 的机器学习模块头文件 #includ…...

【linux深入剖析】深入理解软硬链接 | 动静态库的制作以及使用

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1.理解软硬链接1.1 操作观…...

xss常用标签和触发事件

无过滤情况 <script> <scirpt>alert("xss");</script> <img> 图片加载错误时触发 <img src"x" οnerrοralert(1)> <img src"1" οnerrοreval("alert(xss)")> 鼠标指针移动到元素时触发 <im…...

WPF中Binding的原理和应用

WPF中Binding的原理和应用 在WPF中&#xff0c;Binding机制是实现数据与界面的连接和同步的重要工具。了解Binding的原理和应用&#xff0c;对于开发人员来说是非常重要的。本文将详细介绍WPF中Binding的原理和应用&#xff0c;帮助读者更好地理解和运用这一强大的机制。 Bin…...

探索设计模式的魅力:深度挖掘响应式模式的潜力,从而精准优化AI与机器学习项目的运行效能,引领技术革新潮流

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 挖掘响应式模式&#xff0c;优化AI与机器学习项目性能&#xff0c;引领技术新潮流 ✨机器学习界的…...

《经典论文阅读2》基于随机游走的节点表示学习—Deepwalk算法

word2vec使用语言天生具备序列这一特性训练得到词语的向量表示。而在图结构上&#xff0c;则存在无法序列的难题&#xff0c;因为图结构它不具备序列特性&#xff0c;就无法得到图节点的表示。deepwalk 的作者提出&#xff1a;可以使用在图上随机游走的方式得到一串序列&#x…...

Java实现二叉树(下)

1.前言 http://t.csdnimg.cn/lO4S7 在前文我们已经简单的讲解了二叉树的基本概念&#xff0c;本文将讲解具体的实现 2.基本功能的实现 2.1获取树中节点个数 public int size(TreeNode root){if(rootnull){return 0;}int retsize(root.left)size(root.right)1;return ret;}p…...

Hello 算法10:搜索

https://www.hello-algo.com/chapter_searching/binary_search/ 二分查找法 给定一个长度为 n的数组 nums &#xff0c;元素按从小到大的顺序排列&#xff0c;数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素&#xff0c;则返回 -1 。 # 首…...

常见分类算法详解

在机器学习和数据科学的广阔领域中&#xff0c;分类算法是至关重要的一环。它广泛应用于各种场景&#xff0c;如垃圾邮件检测、图像识别、情感分析等。本文将深入剖析几种常见的分类算法&#xff0c;帮助读者理解其原理、优缺点以及应用场景。 一、K近邻算法&#xff08;K-Nea…...

推送恶意软件的恶意 PowerShell 脚本看起来是人工智能编写的

威胁行为者正在使用 PowerShell 脚本&#xff0c;该脚本可能是在 OpenAI 的 ChatGPT、Google 的 Gemini 或 Microsoft 的 CoPilot 等人工智能系统的帮助下创建的。 攻击者在 3 月份的一次电子邮件活动中使用了该脚本&#xff0c;该活动针对德国的数十个组织来传播 Rhadamanthy…...

微服务之Consul 注册中心介绍以及搭建

一、微服务概述 1.1单体架构 单体架构&#xff08;monolithic structure&#xff09;&#xff1a;顾名思义&#xff0c;整个项目中所有功能模块都在一个工程中开发&#xff1b;项目部署时需要对所有模块一起编译、打包&#xff1b;项目的架构设计、开发模式都非常简单。 当项…...

MES生产管理系统:私有云、公有云与本地化部署的比较分析

随着信息技术的迅猛发展&#xff0c;云计算作为一种新兴的技术服务模式&#xff0c;已经深入渗透到企业的日常运营中。在众多部署方式中&#xff0c;私有云、公有云和本地化部署是三种最为常见的选择。它们各自具有独特的特点和适用场景&#xff0c;并在不同程度上影响着企业的…...

【core analyzer】core analyzer的介绍和安装详情

目录 &#x1f31e;1. core和core analyzer的基本概念 &#x1f33c;1.1 coredump文件 &#x1f33c;1.2 core analyzer &#x1f31e;2. core analyzer的安装详细过程 &#x1f33c;2.1 方式一 简单但不推荐 &#x1f33c;2.2 方式二 推荐 &#x1f33b;2.2.1 安装遇到…...

个人练习之-jenkins

虚拟机环境搭建(买不起服务器 like me) 重点: 0 虚拟机防火墙关闭 systemctl stop firewalld.service systemctl disable firewalld.service 1 (centos7.6)网络配置 (vmware 编辑 -> 虚拟网络编辑器 -> 选择NAT模式 ->NAT设置查看网关) vim /etc/sysconfig/network-sc…...

初探vercel托管项目

文章目录 第一步、注册与登录第二步、本地部署 在个人网站部署的助手vercel&#xff0c;支持 Github部署&#xff0c;只需简单操作&#xff0c;即可发布&#xff0c;方便快捷&#xff01; 第一步、注册与登录 进入vercel【官网】&#xff0c;在右上角 login on&#xff0c;可登…...

软考 - 系统架构设计师 - 质量属性例题 (2)

问题1&#xff1a; 、 问题 2&#xff1a; 系统架构风险&#xff1a;指架构设计中 &#xff0c;潜在的&#xff0c;存在问题的架构决策所带来的隐患。 敏感点&#xff1a;指为了实现某个质量属性&#xff0c;一个或多个构件所具有的特性 权衡点&#xff1a;指影响多个质量属性…...

基于Python豆瓣电影数据可视化分析系统的设计与实现

大数据可视化项目——基于Python豆瓣电影数据可视化分析系统的设计与实现 2024最新项目 项目介绍 本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示&#xff0c;构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据&#xff0c;我们提供了…...

【已开源】​基于stm32f103的爬墙小车

​基于stm32f103的遥控器无线控制爬墙小车&#xff0c;实现功能为可平衡在竖直墙面上&#xff0c;并进行移动和转向&#xff0c;具有超声波防撞功能。 直接上&#xff1a; 演示视频如&#xff1a;哔哩哔哩】 https://b23.tv/BzVTymO 项目说明&#xff1a; 在这个项目中&…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

电脑桌面太单调,用Python写一个桌面小宠物应用。

下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡&#xff0c;可以响应鼠标点击&#xff0c;并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...