4.2、ipex-llm(原bigdl-llm)进行语音识别
ipex-llm环境配置及模型下载
由于需要处理音频文件,还需要安装用于音频分析的 librosa 软件包。
pip install librosa
下载音频文件
!wget -O audio_en.mp3 https://datasets-server.huggingface.co/assets/common_voice/--/en/train/5/audio/audio.mp3
!wget -O audio_zh.mp3 https://datasets-server.huggingface.co/assets/common_voice/--/zh-CN/train/2/audio/audio.mp3
播放下载完成的音频:
import IPythonIPython.display.display(IPython.display.Audio("audio_en.mp3"))
IPython.display.display(IPython.display.Audio("audio_zh.mp3"))
1、加载预训练好的 Whisper 模型
加载一个经过预训练的 Whisper 模型,例如 whisper-medium 。OpenAI 发布了各种尺寸的预训练 Whisper 模型(包括 whisper-small、whisper-tiny 等),您可以选择最符合您要求的模型。
只需在 ipex-llm 中使用单行 transformers-style API,即可加载具有 INT4 优化功能的 whisper-medium(通过指定 load_in_4bit=True),如下所示。请注意,对于 Whisper,我们使用了 AutoModelForSpeechSeq2Seq 类。
from ipex_llm.transformers import AutoModelForSpeechSeq2Seqmodel = AutoModelForSpeechSeq2Seq.from_pretrained(pretrained_model_name_or_path="openai/whisper-medium",load_in_4bit=True,trust_remote_code=True)
2、加载 Whisper Processor
无论是音频预处理还是将模型输出从标记转换为文本的后处理,我们都需要 Whisper Processor。您只需使用官方的 transformers API 加载 WhisperProcessor 即可:
from transformers import WhisperProcessorprocessor = WhisperProcessor.from_pretrained(pretrained_model_name_or_path="openai/whisper-medium")
3、转录英文音频
使用带有 INT4 优化功能的 IPEX-LLM 优化 Whisper 模型并加载 Whisper Processor 后,就可以开始通过模型推理转录音频了。
让我们从英语音频文件 audio_en.mp3 开始。在将其输入 Whisper Processor 之前,我们需要从原始语音波形中提取序列数据:
import librosadata_en, sample_rate_en = librosa.load("audio_en.mp3", sr=16000)
对于 whisper-medium,其 WhisperFeatureExtractor(WhisperProcessor 的一部分)默认使用
16,000Hz 采样率从音频中提取特征。关键的是要用模型的 WhisperFeatureExtractor
以采样率加载音频文件,以便精确识别。
然后,我们就可以根据序列数据转录音频文件,使用的方法与使用官方的 transformers API 完全相同:
import torch
import time# 定义任务类型
forced_decoder_ids = processor.get_decoder_prompt_ids(language="english", task="transcribe")with torch.inference_mode():# 为 Whisper 模型提取输入特征input_features = processor(data_en, sampling_rate=sample_rate_en, return_tensors="pt").input_features# 为转录预测 token idst = time.time()predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)end = time.time()# 将 token id 解码为文本transcribe_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)print(f'Inference time: {end-st} s')print('-'*20, 'English Transcription', '-'*20)print(transcribe_str)
forced_decoder_ids 为不同语言和任务(转录或翻译)定义上下文 token 。如果设置为 None,Whisper 将自动预测它们。
4、转录中文音频并翻译成英文
现在把目光转向中文音频 audio_zh.mp3。Whisper 可以转录多语言音频,并将其翻译成英文。这里唯一的区别是通过 forced_decoder_ids 来定义特定的上下文 token:
# 提取序列数据
data_zh, sample_rate_zh = librosa.load("audio_zh.mp3", sr=16000)# 定义中文转录任务
forced_decoder_ids = processor.get_decoder_prompt_ids(language="chinese", task="transcribe")with torch.inference_mode():input_features = processor(data_zh, sampling_rate=sample_rate_zh, return_tensors="pt").input_featuresst = time.time()predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)end = time.time()transcribe_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)print(f'Inference time: {end-st} s')print('-'*20, 'Chinese Transcription', '-'*20)print(transcribe_str)# 定义中文转录以及翻译任务
forced_decoder_ids = processor.get_decoder_prompt_ids(language="chinese", task="translate")with torch.inference_mode():input_features = processor(data_zh, sampling_rate=sample_rate_zh, return_tensors="pt").input_featuresst = time.time()predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)end = time.time()translate_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)print(f'Inference time: {end-st} s')print('-'*20, 'Chinese to English Translation', '-'*20)print(translate_str)
相关文章:
4.2、ipex-llm(原bigdl-llm)进行语音识别
ipex-llm环境配置及模型下载 由于需要处理音频文件,还需要安装用于音频分析的 librosa 软件包。 pip install librosa下载音频文件 !wget -O audio_en.mp3 https://datasets-server.huggingface.co/assets/common_voice/--/en/train/5/audio/audio.mp3 !wget -O a…...
上海亚商投顾:创业板指低开低走 黄金、家电股逆势大涨
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指4月12日震荡调整,创业板指尾盘跌超1%。黄金板块延续强势,莱绅通灵9连板࿰…...
AIGC革新浪潮:大语言模型如何优化企业运营
在当今快速发展的商业环境中,企业对于有效管理知识资产的需求日益增长。知识管理作为企业核心竞争力的关键组成部分,对于提高决策质量、增强创新能力和优化运营流程起着至关重要的作用。随着数字化转型的推进,企业对知识管理系统提出了新的要…...
Golang基础-12
Go语言基础 介绍 目录操作 创建 删除 重命名 遍历目录 修改权限 文件操作 创建 打开关闭 删除 重命名 修改权限 读文件 写文件 文件定位 拷贝 测试 单元测试 基准测试 示例 介绍 本文介绍Go语言中目录操作(创建目录、删除目录、重命名、遍历…...
python递归统计文件夹下pdf文件的数量
python递归统计文件夹下pdf文件的数量 import os from docx import Documentdef count_all_pages(root_dir):total_pages 0# 遍历文件夹for dirpath, dirnames, filenames in os.walk(root_dir):for filename in filenames:# if filename.endswith(.docx) or filename.endswit…...
Kafka 硬件和操作系统
目录 一. 前言 二. Kafka 硬件和操作系统(Hardware and OS) 2.1. 操作系统(OS) 2.2. 磁盘和文件系统(Disks and Filesystem) 一. 前言 Kafka 是 I/O 密集型而非计算密集型的框架,所以对 CP…...
Kolla-ansible部署OpenStack集群
0. OpenStack 部署 系统要求 单机部署最低配置: 2张网卡8G内存40G硬盘空间 主机系统: CentOS Stream 9Debian Bullseye (11)openEuler 22.03 LTSRocky Linux 9- Ubuntu Jammy (22.04) 官方不再支持CentOS 7作为主机系统,我这里使用的是R…...
SHARE 203S PRO:倾斜摄影相机在地灾救援中的应用
在地质灾害的紧急关头,救援队伍面临的首要任务是迅速而准确地掌握灾区的地理信息。这时,倾斜摄影相机成为了救援测绘的利器。SHARE 203S PRO,这款由深圳赛尔智控科技有限公司研发的五镜头倾斜摄影相机,以其卓越的性能和功能&#…...
MATLAB算法实战应用案例精讲-【数模应用】中介效应分析(补充篇)(附R语言和python代码实现)
目录 前言 几个高频面试题目 中介效应分析与路径分析的区别 1.中介效应分析 2.路径分析 注意事项...
Day96:云上攻防-云原生篇Docker安全系统内核版本漏洞CDK自动利用容器逃逸
目录 云原生-Docker安全-容器逃逸&系统内核漏洞 云原生-Docker安全-容器逃逸&docker版本漏洞 CVE-2019-5736 runC容器逃逸(需要管理员配合触发) CVE-2020-15257 containerd逃逸(启动容器时有前提参数) 云原生-Docker安全-容器逃逸&CDK自动化 知识点࿱…...
python botos s3 aws
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html AWS是亚马逊的云服务,其提供了非常丰富的套件,以及支持多种语言的SDK/API。本文针对其S3云储存服务的Python SDK(boto3)的使用进行介绍。 …...
python画神经网络图
代码1(画神经网络连接图) from math import cos, sin, atan import matplotlib.pyplot as plt # 注意这里并没有用到这个networkx这个库,完全是根据matploblib这个库来画的。 class Neuron():def __init__(self, x, y,radius,nameNone):self.x xself.y …...
Bash 编程精粹:从新手到高手的全面指南之逻辑控制
在 Unix 和 Linux 系统中,Bash(Bourne-Again Shell)是一种广泛使用的 shell,提供了强大的脚本编程能力。本文将详细介绍 Bash 脚本中的逻辑控制结构,包括条件判断、分支选择、循环控制以及退出控制等内容。 条件判断&…...
自动化运维(三十)Ansible 实战之自定义插件
Ansible 自定义插件允许你扩展其功能,以满足特定的自动化需求。Ansible 支持多种类型的插件开发,如动态库存、查找、回调、过滤器、变量等。这里我们将通过实例,介绍如何开发、部署和使用一个自定义插件。 开发自定义查找插件 查找插件用于在 Ansible 任务中动态获取数据。…...
实习僧网站的实习岗位信息分析
目录 背景描述数据说明数据集来源问题描述分析目标以及导入模块1. 数据导入2. 数据基本信息和基本处理3. 数据处理3.1 新建data_clean数据框3.2 数值型数据处理3.2.1 “auth_capital”(注册资本)3.2.2 “day_per_week”(每周工作天数…...
C语言中局部变量和全局变量是否可以重名?为什么?
可以重名 在C语言中, 局部变量指的是定义在函数内的变量, 全局变量指的是定义在函数外的变量 他们在程序中的使用方法是不同的, 当重名时, 局部变量在其所在的作用域内具有更高的优先级, 会覆盖或者说隐藏同名的全局变量 具体来说: 局部变量的生命周期只在函数内部,如果出了…...
小程序中配置scss
找到:project.config.json 文件 setting 模块下添加: "useCompilerPlugins": ["sass","其他的样式类型"] 配置完成后,重启开发工具,并新建文件 结果:...
ZYNQ-Vitis(SDK)裸机开发之(四)PS端MIO和EMIO的使用
目录 一、ZYNQ中MIO和EMIO简介 二、Vivado中搭建block design 1.配置PS端MIO: 2.配置PS端EMIO: 三、Vitis中新建工程进行GPIO控制 1. GPIO操作头文件gpio_hdl.h: 2.GPIO操作源文件gpio_hdl.c: 3.main函数进行调用 例程开发…...
聊聊jvm中内存模型的坑
jvm线程的内存模型 看图,简单来说线程中操作的变量是副本。在并发情况下,如果数据发生变更,副本的数据就变为脏数据。这个时候就会有并发问题。 参考:https://www.cnblogs.com/yeyang/p/12580682.html 怎么解决并发问题 解决的…...
DevOps已死?2024年的DevOps将如何发展
随着我们进入2024年,DevOps也发生了变化。新兴的技术、变化的需求和发展的方法正在重新定义有效实施DevOps实践。 IDC预测显示,未来五年,支持DevOps实践的产品市场继续保持健康且快速增长,2022年-2027年的复合年增长率࿰…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
