当前位置: 首页 > news >正文

TPOT(Tree-based Pipeline Optimization Tool) API简介

文章目录

  • TPOT简介
  • TPOT API
    • Classification
      • 接口形式:
      • Parameters:
      • Attributes:
      • Functions:
    • Regression
      • 接口形式
      • Parameters:(只列与分类任务有差异的参数)

TPOT简介

  • TPOT是一个Python自动机器学习(AML)工具,它使用遗传算法优化机器学习管道;
  • TPOT完成搜索或到达最长等待时间后,它能提供一个最优管道的Python代码;
  • TPOT是基于sklearn,所以风格与其类似。

TPOT API

Classification

接口形式:

tpot.TPOTClassifier(generations=100, population_size=100,offspring_size=None, mutation_rate=0.9,crossover_rate=0.1,scoring='accuracy', cv=5,subsample=1.0, n_jobs=1,max_time_mins=None, max_eval_time_mins=5,random_state=None, config_dict=None,template=None,warm_start=False,memory=None,use_dask=False,periodic_checkpoint_folder=None,early_stop=None,verbosity=0,disable_update_check=False,log_file=None)

Parameters:

  • generations: int or None optional (default=100)【运行优化过程的迭代次数。如果设置为None,就必须定义max_time_mins参数】
  • population_size: int, optional (default=100)【每一代保留的个体个数】
  • offspring_size: int, optional (default=None)【每一代后代个数。默认等于population_size】
  • mutation_rate: float, optional (default=0.9)【变异比例。】
  • crossover_rate: float, optional (default=0.1)【交叉比例。mutation_rate+crossover_rate≤1】
  • scoring: string or callable, optional (default=‘accuracy’)【评价指标。内建的评价指标包括:‘accuracy’, ‘adjusted_rand_score’, ‘average_precision’, ‘balanced_accuracy’, ‘f1’, ‘f1_macro’, ‘f1_micro’, ‘f1_samples’, ‘f1_weighted’, ‘neg_log_loss’, ‘precision’ etc. (suffixes apply as with ‘f1’), ‘recall’ etc. (suffixes apply as with ‘f1’), ‘jaccard’ etc. (suffixes apply as with ‘f1’), ‘roc_auc’, ‘roc_auc_ovr’, ‘roc_auc_ovo’, ‘roc_auc_ovr_weighted’, ‘roc_auc_ovo_weighted’。也可以自定义评价函数scorer(estimator, X, y)】
  • cv: int, cross-validation generator, or an iterable, optional (default=5)
  • subsample: float, optional (default=1.0)
  • n_jobs: integer, optional (default=1)
  • max_time_mins: integer or None, optional (default=None)【单位:分钟。】
  • max_eval_time_mins: float, optional (default=5)【评估单个pipeline最大时间。】
  • random_state: integer or None, optional (default=None)
  • config_dict: Python dictionary, string, or None, optional (default=None)【可能的输入:(1)自定义配置字典;(2)‘TPOT light’,只使用fast模型;(3)‘TPOT MDR’,用于基因组研究的配置;(4) ‘TPOT sparse’,配置字典包含一个one-hot编码,支持稀疏矩阵处理;(5)None,使用默认配置。】
  • template: string (default=None)【预定义的pipeline结构模板。】
  • warm_start: boolean, optional (default=False)【指示标志,是否使用上一次fit的种群结果。中间停止,观察结果,接着搜索。】
  • memory: a joblib.Memory object or string, optional (default=None)
  • use_dask: boolean, optional (default: False)
  • periodic_checkpoint_folder: path string, optional (default: None)【以下情形下会很有用(1)TPOT突然中断;(2)追踪搜索过程;(3)优化过程中抓取pipeline】
  • early_stop: integer, optional (default: None)【给定如果多少代没有提升,就终止优化过程】
  • verbosity: integer, optional (default=0)【(1)0,不打印;(1)打印很少信息;(2)打印更多信息并显示一个进度条;(3)打印所有信息。】
  • disable_update_check: boolean, optional (default=False)【是否检查TPOT版本,如果有新版本,会提醒】
  • log_file: file-like class (io.TextIOWrapper or io.StringIO) or string, optional (default: None)【输出过程内容的文件】

Attributes:

  • fitted_pipeline_: scikit-learn Pipeline object【最优pipeline结果】
  • pareto_front_fitted_pipelines_: Python dictionary【verbosity=3时才能用】
  • evaluated_individuals_: Python dictionary

Functions:

  • fit(features, classes, sample_weight=None, groups=None)
  • predict(features)
  • predict_proba(features)
  • score(testing_features, testing_classes)
  • export(output_file_name)

Regression

接口形式

tpot.TPOTRegressor(generations=100, population_size=100,offspring_size=None, mutation_rate=0.9,crossover_rate=0.1,scoring='neg_mean_squared_error', cv=5,subsample=1.0, n_jobs=1,max_time_mins=None, max_eval_time_mins=5,random_state=None, config_dict=None,template=None,warm_start=False,memory=None,use_dask=False,periodic_checkpoint_folder=None,early_stop=None,verbosity=0,disable_update_check=False)

Parameters:(只列与分类任务有差异的参数)

  • scoring: string or callable, optional (default=‘neg_mean_squared_error’)【‘neg_median_absolute_error’, ‘neg_mean_absolute_error’, ‘neg_mean_squared_error’, ‘r2’】

相关文章:

TPOT(Tree-based Pipeline Optimization Tool) API简介

文章目录TPOT简介TPOT APIClassification接口形式:Parameters:Attributes:Functions:Regression接口形式Parameters:(只列与分类任务有差异的参数)TPOT简介 TPOT是一个Python自动机器学习(AML)…...

Java 19和IntelliJ IDEA,如何和谐共生?

Java仍然是目前比较流行的编程语言,它更短的发布节奏让开发者每六个月左右就可以试用新的语言或平台功能,IntelliJ IDEA帮助我们更流畅地发现和使用这些新功能。IntelliJ IDEA v2022.3正式版下载(Q技术交流:786598704)在本文中&am…...

js循环判断的方法

js循环判断的方法if语句if else语句if else if else if......三元表达式switchswitch语句和if语句的区别for循环while循环do while循环for inforEachfor of性能问题if语句 条件满足就执行,不满足就不执行 if(条件){语句}if else语句 条件满足,执行语句…...

git快速入门(1)

1 git的下载与安装1)下载git安装包下载路径:https://git-scm.com/我的操作系统是window,64位的,我下载的Git-2.33.0-64-bit.exe,从官网下载或者从网址下载链接:链接地址:https://pan.baidu.com/…...

韩国绿芯1~16通道触摸芯片型号推荐

随着技术的发展,触摸感应技术正日益受到更多关注和应用,目前实现触摸感应的方式主要有两种,一种是电阻式,另一种是电容式。电容式触摸具有感应灵敏、功耗低、寿命长等特点,因此逐步取代电阻式触摸,成为当前…...

Go语言设计与实现 -- http服务器编程

Go http服务器编程 初始 http 是典型的 C/S 架构,客户端向服务端发送请求(request),服务端做出应答(response)。 golang 的标准库 net/http 提供了 http 编程有关的接口,封装了内部TCP连接和…...

MySQL-视图

视图是什么? 一张虚表,和真实的表一样。视图包含一系列带有名称的行和列数据。视图是从一个或多个表中导出来的,我们可以通过insert,update,delete来操作视图。当通过视图看到的数据被修改时,相应的原表的数…...

都工作3年了,怎么能不懂双亲委派呢?(带你手把手断点源码)

💗推荐阅读文章💗 🌸JavaSE系列🌸👉1️⃣《JavaSE系列教程》🌺MySQL系列🌺👉2️⃣《MySQL系列教程》🍀JavaWeb系列🍀👉3️⃣《JavaWeb系列教程》…...

Hive 运行环境搭建

文章目录Hive 运行环境搭建一、Hive 安装部署1、安装hive2、MySQL 安装3、Hive 元数据配置到 Mysql1) 拷贝驱动2) 配置Metastore 到 MySQL3) 再次启动Hive4) 使用元数据服务的方式访问Hive二、使用Dbaver连接HiveHive 运行环境搭建 HIve 下载地址:http://archive.a…...

SAP ABAP 深度解析Smartform打印特殊符号等功能

ABAP 开发人员可以在 Smartform 输出上显示 SAP 图标或 SAP 符号。例如,需要在 SAP Smart Forms 文档上显示复选框形状的输出。SAP Smartform 文档上可以轻松显示空复选框、标记复选框以及 SAP 图标等特殊符号。 在 SAP Smartform 文档中添加一个新的文本节点。 1. 单击“更…...

React17+React Hook+TS4 最佳实践仿 Jira 企业级项目笔记

前言 个人笔记,记录个人过程,如有不对,敬请指出React17React HookTS4 最佳实践仿 Jira 企业级项目项目完成到第十章,剩下后面就没有看了,说的不是特别好 github地址:https://github.com/superBiuBiuMan/React-jira husky方便我们管理git hooks的工具 REST-API风格 https://zh…...

35- tensorboard的使用 (PyTorch系列) (深度学习)

知识要点 FashionMNIST数据集: 十种产品的分类. # T-shirt/top, Trouser, Pullover, Dress, Coat,Sandal, Shirt, Sneaker, Bag, Ankle Boot.writer SummaryWriter(run/fashion_mnist_experiment_1) # 网站显示一 tensorboard的使用 在网站显示pytorch的架构:1.1 …...

ChatGPT在工业领域的用法

在工业数字化时代,我们需要怎么样的ChatGPT? 近日,ChatGPT热度高居不下,强大的人机交互能力令人咋舌,在国内更是掀起一股讨论热潮。一时间,这场由ChatGPT引起的科技飓风,使得全球最顶尖科技力量…...

使用Chakra-UI封装简书的登录页面组件(React)

要求:使用chakra ui和react 框架将简书的登录页面的表单封装成独立的可重用的组件使用到的API:注册API请求方式:POST 请求地址:https://conduit.productionready.io/api/users请求数据: {"user":{ "username&quo…...

Three.js初试——基础概念(二)

前言 姊妹篇:Three.js初试——基础概念 介绍了 Three.js 的一些核心要素概念,这篇文章会讲一下它的关键要素概念。 之前我们了解到展示一个3D图像,必须要有场景、相机、渲染器这些核心要素,仅仅这些还不够,我们还需要…...

Qt音视频开发21-mpv内核万能属性机制

一、前言 搞过vlc内核后又顺带搞了搞mpv内核,mpv相比vlc,在文件数量、sdk开发便捷性方面绝对占优势的,单文件(可能是静态编译),不像vlc带了一堆插件,通过各种属性来set和get值,后面…...

C语言学生随机抽号演讲计分系统

6.学生随机抽号演讲计分系统(★★★★) 设计一款用于课程大作业检查或比赛计分的软件,基本功能: (1)设置本课程的学生总数 (2)根据本次参与的学生总数,随机抽取一个还未汇报演讲的学生的学号。 (3)每个学生汇报演讲完毕,输入该学生…...

Spring Boot 3.0系列【12】核心特性篇之任务调度

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot版本3.0.3 源码地址:https://gitee.com/pearl-organization/study-spring-boot3 文章目录 前言Spring Scheduler1. 单线程任务2. 自动配置3. 多线程异步任务Quartz1. 简介2. 核心组件2.1 Job(任务)2.2 Trigger(…...

Java操作XML

Java操作XML XML语法 一个XML文件分为文档声明、元素、属性、注释、CDATA区、特殊字符、处理指令。 转义字符 对于一些单个字符&#xff0c;若想显示其原始样式&#xff0c;也可以使用转义的形式予以处理。 & > &amp; < > < > > > " &g…...

女神节灯笼祝福【HTML+CSS】

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)

本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢&#xff0c;连接红外测温传感器&#xff0c;可实时精准捕捉宠物体温变化&#xff0c;以便及时发现健康异常&#xff1b;水位检测传感器时刻监测饮用水余量&#xff0c;防止宠物…...

Django RBAC项目后端实战 - 03 DRF权限控制实现

项目背景 在上一篇文章中&#xff0c;我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统&#xff0c;为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...