当前位置: 首页 > news >正文

TPOT(Tree-based Pipeline Optimization Tool) API简介

文章目录

  • TPOT简介
  • TPOT API
    • Classification
      • 接口形式:
      • Parameters:
      • Attributes:
      • Functions:
    • Regression
      • 接口形式
      • Parameters:(只列与分类任务有差异的参数)

TPOT简介

  • TPOT是一个Python自动机器学习(AML)工具,它使用遗传算法优化机器学习管道;
  • TPOT完成搜索或到达最长等待时间后,它能提供一个最优管道的Python代码;
  • TPOT是基于sklearn,所以风格与其类似。

TPOT API

Classification

接口形式:

tpot.TPOTClassifier(generations=100, population_size=100,offspring_size=None, mutation_rate=0.9,crossover_rate=0.1,scoring='accuracy', cv=5,subsample=1.0, n_jobs=1,max_time_mins=None, max_eval_time_mins=5,random_state=None, config_dict=None,template=None,warm_start=False,memory=None,use_dask=False,periodic_checkpoint_folder=None,early_stop=None,verbosity=0,disable_update_check=False,log_file=None)

Parameters:

  • generations: int or None optional (default=100)【运行优化过程的迭代次数。如果设置为None,就必须定义max_time_mins参数】
  • population_size: int, optional (default=100)【每一代保留的个体个数】
  • offspring_size: int, optional (default=None)【每一代后代个数。默认等于population_size】
  • mutation_rate: float, optional (default=0.9)【变异比例。】
  • crossover_rate: float, optional (default=0.1)【交叉比例。mutation_rate+crossover_rate≤1】
  • scoring: string or callable, optional (default=‘accuracy’)【评价指标。内建的评价指标包括:‘accuracy’, ‘adjusted_rand_score’, ‘average_precision’, ‘balanced_accuracy’, ‘f1’, ‘f1_macro’, ‘f1_micro’, ‘f1_samples’, ‘f1_weighted’, ‘neg_log_loss’, ‘precision’ etc. (suffixes apply as with ‘f1’), ‘recall’ etc. (suffixes apply as with ‘f1’), ‘jaccard’ etc. (suffixes apply as with ‘f1’), ‘roc_auc’, ‘roc_auc_ovr’, ‘roc_auc_ovo’, ‘roc_auc_ovr_weighted’, ‘roc_auc_ovo_weighted’。也可以自定义评价函数scorer(estimator, X, y)】
  • cv: int, cross-validation generator, or an iterable, optional (default=5)
  • subsample: float, optional (default=1.0)
  • n_jobs: integer, optional (default=1)
  • max_time_mins: integer or None, optional (default=None)【单位:分钟。】
  • max_eval_time_mins: float, optional (default=5)【评估单个pipeline最大时间。】
  • random_state: integer or None, optional (default=None)
  • config_dict: Python dictionary, string, or None, optional (default=None)【可能的输入:(1)自定义配置字典;(2)‘TPOT light’,只使用fast模型;(3)‘TPOT MDR’,用于基因组研究的配置;(4) ‘TPOT sparse’,配置字典包含一个one-hot编码,支持稀疏矩阵处理;(5)None,使用默认配置。】
  • template: string (default=None)【预定义的pipeline结构模板。】
  • warm_start: boolean, optional (default=False)【指示标志,是否使用上一次fit的种群结果。中间停止,观察结果,接着搜索。】
  • memory: a joblib.Memory object or string, optional (default=None)
  • use_dask: boolean, optional (default: False)
  • periodic_checkpoint_folder: path string, optional (default: None)【以下情形下会很有用(1)TPOT突然中断;(2)追踪搜索过程;(3)优化过程中抓取pipeline】
  • early_stop: integer, optional (default: None)【给定如果多少代没有提升,就终止优化过程】
  • verbosity: integer, optional (default=0)【(1)0,不打印;(1)打印很少信息;(2)打印更多信息并显示一个进度条;(3)打印所有信息。】
  • disable_update_check: boolean, optional (default=False)【是否检查TPOT版本,如果有新版本,会提醒】
  • log_file: file-like class (io.TextIOWrapper or io.StringIO) or string, optional (default: None)【输出过程内容的文件】

Attributes:

  • fitted_pipeline_: scikit-learn Pipeline object【最优pipeline结果】
  • pareto_front_fitted_pipelines_: Python dictionary【verbosity=3时才能用】
  • evaluated_individuals_: Python dictionary

Functions:

  • fit(features, classes, sample_weight=None, groups=None)
  • predict(features)
  • predict_proba(features)
  • score(testing_features, testing_classes)
  • export(output_file_name)

Regression

接口形式

tpot.TPOTRegressor(generations=100, population_size=100,offspring_size=None, mutation_rate=0.9,crossover_rate=0.1,scoring='neg_mean_squared_error', cv=5,subsample=1.0, n_jobs=1,max_time_mins=None, max_eval_time_mins=5,random_state=None, config_dict=None,template=None,warm_start=False,memory=None,use_dask=False,periodic_checkpoint_folder=None,early_stop=None,verbosity=0,disable_update_check=False)

Parameters:(只列与分类任务有差异的参数)

  • scoring: string or callable, optional (default=‘neg_mean_squared_error’)【‘neg_median_absolute_error’, ‘neg_mean_absolute_error’, ‘neg_mean_squared_error’, ‘r2’】

相关文章:

TPOT(Tree-based Pipeline Optimization Tool) API简介

文章目录TPOT简介TPOT APIClassification接口形式:Parameters:Attributes:Functions:Regression接口形式Parameters:(只列与分类任务有差异的参数)TPOT简介 TPOT是一个Python自动机器学习(AML)…...

Java 19和IntelliJ IDEA,如何和谐共生?

Java仍然是目前比较流行的编程语言,它更短的发布节奏让开发者每六个月左右就可以试用新的语言或平台功能,IntelliJ IDEA帮助我们更流畅地发现和使用这些新功能。IntelliJ IDEA v2022.3正式版下载(Q技术交流:786598704)在本文中&am…...

js循环判断的方法

js循环判断的方法if语句if else语句if else if else if......三元表达式switchswitch语句和if语句的区别for循环while循环do while循环for inforEachfor of性能问题if语句 条件满足就执行,不满足就不执行 if(条件){语句}if else语句 条件满足,执行语句…...

git快速入门(1)

1 git的下载与安装1)下载git安装包下载路径:https://git-scm.com/我的操作系统是window,64位的,我下载的Git-2.33.0-64-bit.exe,从官网下载或者从网址下载链接:链接地址:https://pan.baidu.com/…...

韩国绿芯1~16通道触摸芯片型号推荐

随着技术的发展,触摸感应技术正日益受到更多关注和应用,目前实现触摸感应的方式主要有两种,一种是电阻式,另一种是电容式。电容式触摸具有感应灵敏、功耗低、寿命长等特点,因此逐步取代电阻式触摸,成为当前…...

Go语言设计与实现 -- http服务器编程

Go http服务器编程 初始 http 是典型的 C/S 架构,客户端向服务端发送请求(request),服务端做出应答(response)。 golang 的标准库 net/http 提供了 http 编程有关的接口,封装了内部TCP连接和…...

MySQL-视图

视图是什么? 一张虚表,和真实的表一样。视图包含一系列带有名称的行和列数据。视图是从一个或多个表中导出来的,我们可以通过insert,update,delete来操作视图。当通过视图看到的数据被修改时,相应的原表的数…...

都工作3年了,怎么能不懂双亲委派呢?(带你手把手断点源码)

💗推荐阅读文章💗 🌸JavaSE系列🌸👉1️⃣《JavaSE系列教程》🌺MySQL系列🌺👉2️⃣《MySQL系列教程》🍀JavaWeb系列🍀👉3️⃣《JavaWeb系列教程》…...

Hive 运行环境搭建

文章目录Hive 运行环境搭建一、Hive 安装部署1、安装hive2、MySQL 安装3、Hive 元数据配置到 Mysql1) 拷贝驱动2) 配置Metastore 到 MySQL3) 再次启动Hive4) 使用元数据服务的方式访问Hive二、使用Dbaver连接HiveHive 运行环境搭建 HIve 下载地址:http://archive.a…...

SAP ABAP 深度解析Smartform打印特殊符号等功能

ABAP 开发人员可以在 Smartform 输出上显示 SAP 图标或 SAP 符号。例如,需要在 SAP Smart Forms 文档上显示复选框形状的输出。SAP Smartform 文档上可以轻松显示空复选框、标记复选框以及 SAP 图标等特殊符号。 在 SAP Smartform 文档中添加一个新的文本节点。 1. 单击“更…...

React17+React Hook+TS4 最佳实践仿 Jira 企业级项目笔记

前言 个人笔记,记录个人过程,如有不对,敬请指出React17React HookTS4 最佳实践仿 Jira 企业级项目项目完成到第十章,剩下后面就没有看了,说的不是特别好 github地址:https://github.com/superBiuBiuMan/React-jira husky方便我们管理git hooks的工具 REST-API风格 https://zh…...

35- tensorboard的使用 (PyTorch系列) (深度学习)

知识要点 FashionMNIST数据集: 十种产品的分类. # T-shirt/top, Trouser, Pullover, Dress, Coat,Sandal, Shirt, Sneaker, Bag, Ankle Boot.writer SummaryWriter(run/fashion_mnist_experiment_1) # 网站显示一 tensorboard的使用 在网站显示pytorch的架构:1.1 …...

ChatGPT在工业领域的用法

在工业数字化时代,我们需要怎么样的ChatGPT? 近日,ChatGPT热度高居不下,强大的人机交互能力令人咋舌,在国内更是掀起一股讨论热潮。一时间,这场由ChatGPT引起的科技飓风,使得全球最顶尖科技力量…...

使用Chakra-UI封装简书的登录页面组件(React)

要求:使用chakra ui和react 框架将简书的登录页面的表单封装成独立的可重用的组件使用到的API:注册API请求方式:POST 请求地址:https://conduit.productionready.io/api/users请求数据: {"user":{ "username&quo…...

Three.js初试——基础概念(二)

前言 姊妹篇:Three.js初试——基础概念 介绍了 Three.js 的一些核心要素概念,这篇文章会讲一下它的关键要素概念。 之前我们了解到展示一个3D图像,必须要有场景、相机、渲染器这些核心要素,仅仅这些还不够,我们还需要…...

Qt音视频开发21-mpv内核万能属性机制

一、前言 搞过vlc内核后又顺带搞了搞mpv内核,mpv相比vlc,在文件数量、sdk开发便捷性方面绝对占优势的,单文件(可能是静态编译),不像vlc带了一堆插件,通过各种属性来set和get值,后面…...

C语言学生随机抽号演讲计分系统

6.学生随机抽号演讲计分系统(★★★★) 设计一款用于课程大作业检查或比赛计分的软件,基本功能: (1)设置本课程的学生总数 (2)根据本次参与的学生总数,随机抽取一个还未汇报演讲的学生的学号。 (3)每个学生汇报演讲完毕,输入该学生…...

Spring Boot 3.0系列【12】核心特性篇之任务调度

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot版本3.0.3 源码地址:https://gitee.com/pearl-organization/study-spring-boot3 文章目录 前言Spring Scheduler1. 单线程任务2. 自动配置3. 多线程异步任务Quartz1. 简介2. 核心组件2.1 Job(任务)2.2 Trigger(…...

Java操作XML

Java操作XML XML语法 一个XML文件分为文档声明、元素、属性、注释、CDATA区、特殊字符、处理指令。 转义字符 对于一些单个字符&#xff0c;若想显示其原始样式&#xff0c;也可以使用转义的形式予以处理。 & > &amp; < > < > > > " &g…...

女神节灯笼祝福【HTML+CSS】

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...