TPOT(Tree-based Pipeline Optimization Tool) API简介
文章目录
- TPOT简介
- TPOT API
- Classification
- 接口形式:
- Parameters:
- Attributes:
- Functions:
- Regression
- 接口形式
- Parameters:(只列与分类任务有差异的参数)
TPOT简介
- TPOT是一个Python自动机器学习(AML)工具,它使用遗传算法优化机器学习管道;
- TPOT完成搜索或到达最长等待时间后,它能提供一个最优管道的Python代码;
- TPOT是基于sklearn,所以风格与其类似。
TPOT API
Classification
接口形式:
tpot.TPOTClassifier(generations=100, population_size=100,offspring_size=None, mutation_rate=0.9,crossover_rate=0.1,scoring='accuracy', cv=5,subsample=1.0, n_jobs=1,max_time_mins=None, max_eval_time_mins=5,random_state=None, config_dict=None,template=None,warm_start=False,memory=None,use_dask=False,periodic_checkpoint_folder=None,early_stop=None,verbosity=0,disable_update_check=False,log_file=None)
Parameters:
- generations: int or None optional (default=100)【运行优化过程的迭代次数。如果设置为None,就必须定义max_time_mins参数】
- population_size: int, optional (default=100)【每一代保留的个体个数】
- offspring_size: int, optional (default=None)【每一代后代个数。默认等于population_size】
- mutation_rate: float, optional (default=0.9)【变异比例。】
- crossover_rate: float, optional (default=0.1)【交叉比例。mutation_rate+crossover_rate≤1】
- scoring: string or callable, optional (default=‘accuracy’)【评价指标。内建的评价指标包括:‘accuracy’, ‘adjusted_rand_score’, ‘average_precision’, ‘balanced_accuracy’, ‘f1’, ‘f1_macro’, ‘f1_micro’, ‘f1_samples’, ‘f1_weighted’, ‘neg_log_loss’, ‘precision’ etc. (suffixes apply as with ‘f1’), ‘recall’ etc. (suffixes apply as with ‘f1’), ‘jaccard’ etc. (suffixes apply as with ‘f1’), ‘roc_auc’, ‘roc_auc_ovr’, ‘roc_auc_ovo’, ‘roc_auc_ovr_weighted’, ‘roc_auc_ovo_weighted’。也可以自定义评价函数scorer(estimator, X, y)】
- cv: int, cross-validation generator, or an iterable, optional (default=5)
- subsample: float, optional (default=1.0)
- n_jobs: integer, optional (default=1)
- max_time_mins: integer or None, optional (default=None)【单位:分钟。】
- max_eval_time_mins: float, optional (default=5)【评估单个pipeline最大时间。】
- random_state: integer or None, optional (default=None)
- config_dict: Python dictionary, string, or None, optional (default=None)【可能的输入:(1)自定义配置字典;(2)‘TPOT light’,只使用fast模型;(3)‘TPOT MDR’,用于基因组研究的配置;(4) ‘TPOT sparse’,配置字典包含一个one-hot编码,支持稀疏矩阵处理;(5)None,使用默认配置。】
- template: string (default=None)【预定义的pipeline结构模板。】
- warm_start: boolean, optional (default=False)【指示标志,是否使用上一次fit的种群结果。中间停止,观察结果,接着搜索。】
- memory: a joblib.Memory object or string, optional (default=None)
- use_dask: boolean, optional (default: False)
- periodic_checkpoint_folder: path string, optional (default: None)【以下情形下会很有用(1)TPOT突然中断;(2)追踪搜索过程;(3)优化过程中抓取pipeline】
- early_stop: integer, optional (default: None)【给定如果多少代没有提升,就终止优化过程】
- verbosity: integer, optional (default=0)【(1)0,不打印;(1)打印很少信息;(2)打印更多信息并显示一个进度条;(3)打印所有信息。】
- disable_update_check: boolean, optional (default=False)【是否检查TPOT版本,如果有新版本,会提醒】
- log_file: file-like class (io.TextIOWrapper or io.StringIO) or string, optional (default: None)【输出过程内容的文件】
Attributes:
- fitted_pipeline_: scikit-learn Pipeline object【最优pipeline结果】
- pareto_front_fitted_pipelines_: Python dictionary【verbosity=3时才能用】
- evaluated_individuals_: Python dictionary
Functions:
- fit(features, classes, sample_weight=None, groups=None)
- predict(features)
- predict_proba(features)
- score(testing_features, testing_classes)
- export(output_file_name)
Regression
接口形式
tpot.TPOTRegressor(generations=100, population_size=100,offspring_size=None, mutation_rate=0.9,crossover_rate=0.1,scoring='neg_mean_squared_error', cv=5,subsample=1.0, n_jobs=1,max_time_mins=None, max_eval_time_mins=5,random_state=None, config_dict=None,template=None,warm_start=False,memory=None,use_dask=False,periodic_checkpoint_folder=None,early_stop=None,verbosity=0,disable_update_check=False)
Parameters:(只列与分类任务有差异的参数)
- scoring: string or callable, optional (default=‘neg_mean_squared_error’)【‘neg_median_absolute_error’, ‘neg_mean_absolute_error’, ‘neg_mean_squared_error’, ‘r2’】
相关文章:
TPOT(Tree-based Pipeline Optimization Tool) API简介
文章目录TPOT简介TPOT APIClassification接口形式:Parameters:Attributes:Functions:Regression接口形式Parameters:(只列与分类任务有差异的参数)TPOT简介 TPOT是一个Python自动机器学习(AML)…...
Java 19和IntelliJ IDEA,如何和谐共生?
Java仍然是目前比较流行的编程语言,它更短的发布节奏让开发者每六个月左右就可以试用新的语言或平台功能,IntelliJ IDEA帮助我们更流畅地发现和使用这些新功能。IntelliJ IDEA v2022.3正式版下载(Q技术交流:786598704)在本文中&am…...
js循环判断的方法
js循环判断的方法if语句if else语句if else if else if......三元表达式switchswitch语句和if语句的区别for循环while循环do while循环for inforEachfor of性能问题if语句 条件满足就执行,不满足就不执行 if(条件){语句}if else语句 条件满足,执行语句…...
git快速入门(1)
1 git的下载与安装1)下载git安装包下载路径:https://git-scm.com/我的操作系统是window,64位的,我下载的Git-2.33.0-64-bit.exe,从官网下载或者从网址下载链接:链接地址:https://pan.baidu.com/…...
韩国绿芯1~16通道触摸芯片型号推荐
随着技术的发展,触摸感应技术正日益受到更多关注和应用,目前实现触摸感应的方式主要有两种,一种是电阻式,另一种是电容式。电容式触摸具有感应灵敏、功耗低、寿命长等特点,因此逐步取代电阻式触摸,成为当前…...
Go语言设计与实现 -- http服务器编程
Go http服务器编程 初始 http 是典型的 C/S 架构,客户端向服务端发送请求(request),服务端做出应答(response)。 golang 的标准库 net/http 提供了 http 编程有关的接口,封装了内部TCP连接和…...
MySQL-视图
视图是什么? 一张虚表,和真实的表一样。视图包含一系列带有名称的行和列数据。视图是从一个或多个表中导出来的,我们可以通过insert,update,delete来操作视图。当通过视图看到的数据被修改时,相应的原表的数…...
都工作3年了,怎么能不懂双亲委派呢?(带你手把手断点源码)
💗推荐阅读文章💗 🌸JavaSE系列🌸👉1️⃣《JavaSE系列教程》🌺MySQL系列🌺👉2️⃣《MySQL系列教程》🍀JavaWeb系列🍀👉3️⃣《JavaWeb系列教程》…...
Hive 运行环境搭建
文章目录Hive 运行环境搭建一、Hive 安装部署1、安装hive2、MySQL 安装3、Hive 元数据配置到 Mysql1) 拷贝驱动2) 配置Metastore 到 MySQL3) 再次启动Hive4) 使用元数据服务的方式访问Hive二、使用Dbaver连接HiveHive 运行环境搭建 HIve 下载地址:http://archive.a…...
SAP ABAP 深度解析Smartform打印特殊符号等功能
ABAP 开发人员可以在 Smartform 输出上显示 SAP 图标或 SAP 符号。例如,需要在 SAP Smart Forms 文档上显示复选框形状的输出。SAP Smartform 文档上可以轻松显示空复选框、标记复选框以及 SAP 图标等特殊符号。 在 SAP Smartform 文档中添加一个新的文本节点。 1. 单击“更…...
React17+React Hook+TS4 最佳实践仿 Jira 企业级项目笔记
前言 个人笔记,记录个人过程,如有不对,敬请指出React17React HookTS4 最佳实践仿 Jira 企业级项目项目完成到第十章,剩下后面就没有看了,说的不是特别好 github地址:https://github.com/superBiuBiuMan/React-jira husky方便我们管理git hooks的工具 REST-API风格 https://zh…...
35- tensorboard的使用 (PyTorch系列) (深度学习)
知识要点 FashionMNIST数据集: 十种产品的分类. # T-shirt/top, Trouser, Pullover, Dress, Coat,Sandal, Shirt, Sneaker, Bag, Ankle Boot.writer SummaryWriter(run/fashion_mnist_experiment_1) # 网站显示一 tensorboard的使用 在网站显示pytorch的架构:1.1 …...
ChatGPT在工业领域的用法
在工业数字化时代,我们需要怎么样的ChatGPT? 近日,ChatGPT热度高居不下,强大的人机交互能力令人咋舌,在国内更是掀起一股讨论热潮。一时间,这场由ChatGPT引起的科技飓风,使得全球最顶尖科技力量…...
使用Chakra-UI封装简书的登录页面组件(React)
要求:使用chakra ui和react 框架将简书的登录页面的表单封装成独立的可重用的组件使用到的API:注册API请求方式:POST 请求地址:https://conduit.productionready.io/api/users请求数据: {"user":{ "username&quo…...
Three.js初试——基础概念(二)
前言 姊妹篇:Three.js初试——基础概念 介绍了 Three.js 的一些核心要素概念,这篇文章会讲一下它的关键要素概念。 之前我们了解到展示一个3D图像,必须要有场景、相机、渲染器这些核心要素,仅仅这些还不够,我们还需要…...
Qt音视频开发21-mpv内核万能属性机制
一、前言 搞过vlc内核后又顺带搞了搞mpv内核,mpv相比vlc,在文件数量、sdk开发便捷性方面绝对占优势的,单文件(可能是静态编译),不像vlc带了一堆插件,通过各种属性来set和get值,后面…...
C语言学生随机抽号演讲计分系统
6.学生随机抽号演讲计分系统(★★★★) 设计一款用于课程大作业检查或比赛计分的软件,基本功能: (1)设置本课程的学生总数 (2)根据本次参与的学生总数,随机抽取一个还未汇报演讲的学生的学号。 (3)每个学生汇报演讲完毕,输入该学生…...
Spring Boot 3.0系列【12】核心特性篇之任务调度
有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot版本3.0.3 源码地址:https://gitee.com/pearl-organization/study-spring-boot3 文章目录 前言Spring Scheduler1. 单线程任务2. 自动配置3. 多线程异步任务Quartz1. 简介2. 核心组件2.1 Job(任务)2.2 Trigger(…...
Java操作XML
Java操作XML XML语法 一个XML文件分为文档声明、元素、属性、注释、CDATA区、特殊字符、处理指令。 转义字符 对于一些单个字符,若想显示其原始样式,也可以使用转义的形式予以处理。 & > & < > < > > > " &g…...
女神节灯笼祝福【HTML+CSS】
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
CUDA并行计算基础知识
1、相关缩写术语 显卡:GPU 显卡驱动:驱动软件 GPU架构: 硬件的设计方式,例如是否有L1 or L2缓存 CUDA: 一种编程语言像C++, Python等,只不过它是专门用来操控GPU的 cudnn: 一个专门为深度学习计算设计的软件库,里面提供了很多专门的计算函数 CUDAToolkit:所谓的装cuda首先…...
88. 合并两个有序数组
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。注意:最终,合并后数组不应…...
卢益贵(码客):软件开发团队的管理要素
卢益贵(码客):软件开发团队的管理要素 最好的范例是领导 无论个人素养、技术水平和代码风格,管理者应该起到典范的作用。 最高的权力是威望 管理者的威望比手中权力更有信服力。在处处倚仗权力施压的团队中,高压必有…...
中小企业的TO B蓝海,如何「掘金」?
中国中小企业的数字化转型土壤,如今究竟成长到了哪一步?对一众数字服务厂商而言,在另一个付费群体出现的当下,产品形态是否应该进行微调? 作者|皮爷 出品|产业家 中国市场存在一个黄金定律:二八法则。 这…...
C++ 算法主题系列之集结0-1背包问题的所有求解方案
1. 前言 背包问题是类型问题,通过对这一类型问题的理解和掌握,从而可以归纳出求解此类问题的思路和模板。 背包问题的分类有: 0-1背包问题,也称为不可分割背包问题。无限背包问题。判定性背包问题.带附属关系的背包问题。双背包…...
【Vue】Vue常见的6种指令
Vue的6种指令-前言指令(Directives)是vue 为开发者提供的模板语法,用于辅助开发者渲染页面的基本结构。vue 中的指令按照不同的用途可以分为如下6 大类① 内容渲染指令 ② 属性绑定指令 ③ 事件绑定指令 ④ 双向绑定指令 ⑤ 条件渲染指令 ⑥ …...
计算机科学与技术(嵌入式)四年学习资料_文件目录树
说明: 资料内容主要包括:计嵌专业2019级大学四年主要科目的各种电子资料,有电子实验报告、课程设计报告、课程设计项目、整理复习笔记、电子书、ppt、练习题、期末试卷、部分课程软件资源、科创项目,职业生涯规划书,大…...
【java】Java 继承
文章目录继承的概念生活中的继承:类的继承格式为什么需要继承公共父类:继承类型继承的特性继承关键字extends关键字implements关键字super 与 this 关键字final 关键字构造器继承的概念 继承是java面向对象编程技术的一块基石,因为它允许创建…...
自媒体账号数据分析从何入手?
账号的数据可以直接反应这个账号的好坏,数据越高收益就会越好,数据越差收益自然高不了。 新手要从哪些方面入手见效更快呢?今天大周就来把自己的经验分享给粉丝们! 1、账号定位 (1)账号所创作的领域 &a…...
Clickhouse新版本JSON字段数据写入方式
Clickhouse新版本JSON字段数据写入方式 在Clickhouse版本22.3.1版本以上,提供了针对JSON格式数据的新的数据类型:JSON,从而实现了存储此类数据由原先的结构化表结构,更新为现在的半结构化表存储。对于新增字段,某些同…...
wordpress源码讲解/网站优化人员通常会将目标关键词放在网站首页中的
【摘要】PHP即“超文本预处理器”,是一种通用开源脚本语言。PHP是在服务器端执行的脚本语言,与C语言类似,是常用的网站编程语言。PHP独特的语法混合了C、Java、Perl以及 PHP 自创的语法。下面是php如何去除字符串中的空格,让我们一…...
货架网站开发/色盲测试图第六版
一、介绍 time() : 获取当前从1970-01-01 00:00:00 +0000 (UTC)到现在的秒数 ctime() : 将 time_t转换为可打印格式 #include <time.h>// 1. 不管参数为不为NULL,返回的都是从 1970-01-01 00:00:00 +0000 (UTC)到现在的秒数 // 和 gettimeofday 返回的tv参数中 tv_se…...
wordpress分页插件/电商网站建设开发
Python 中文编码前面章节中我们已经学会了如何用 Python 输出 "Hello, World!",英文没有问题,但是如果你输出中文字符 "你好,世界" 就有可能会碰到中文编码问题。Python 文件中如果未指定编码,在执行过程会出…...
上海中建建筑设计院有限公司/sem优化软件选哪家
转载于:https://www.cnblogs.com/sapb1/p/5441760.html...
网站做链接算侵权吗/众志seo
计算机系统的组成 (电脑入门到精通网 www.58116.cn)微型计算机由硬件系统和软件系统组成。硬件系统:指构成计算机的电子线路、电子元器件和机械装置等物理设备,它包括计算机的主机及外部设备。 (电脑入门到精通网 www.58116.cn)软件系统:指程…...
南京服装网站建设/青岛seo经理
点击上方“Java基基”,选择“设为星标”做积极的人,而不是积极废人!源码精品专栏 原创 | Java 2020 超神之路,很肝~中文详细注释的开源项目RPC 框架 Dubbo 源码解析网络应用框架 Netty 源码解析消息中间件 RocketMQ 源码解析数据库…...