当前位置: 首页 > news >正文

【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩

文章目录

背景介绍

初始代码

优化代码

分析和应用

总结


背景介绍

        在一个嵌入式软件开发项目中,有一个使用MATLAB Function编写的算法模块,功能是从一个较大的数组中提取一段数据,然后求均值输出,示例如下:

初始代码

        一开始算法开发的思路非常简单,按照功能需求把算法分成两步。第一步提取目标数据,第二步求均值输出。示例如下:

function y = fcn(u, n)assert(n <= 100);x = zeros(1, n);for i=1:1:nx(i) = u(i);endy = mean(x);

        基于上述算法编译后生成的代码如下:

/* Model step function */void DynamicRAMdown_step(void){real_T x_data[100];int32_T i;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {x_data[i] = DynamicRAMdown_ConstP.Constant_Value[i];}DynamicRAMdown_Y.y = x_data[0];for (i = 2; i < 6; i++) {DynamicRAMdown_Y.y += x_data[i - 1];}/* Outport: '<Root>/y' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/DynamicRAMdown_Y.y /= 5.0;}

        分析上述代码可以看到,该算法的动态内存负荷是一个数组x_data[100]和一个i,数组x_data[100]的length是100,但是实际有用的长度只有5,另外95都是浪费的。

        而且随着具体应用的变化,如果数据数组更大,那么不必要的动态内存负荷浪费就会更严重,所以该算法有较大的优化空间。

优化代码

        我们利用matlab中的数组截取功能,把截取的数组直接送入求均值的函数,这样就不产生上述的中间变量数组x,示例如下: 

function y = fcn(u, n)y = mean(u(1:n));

        基于上述算法编译后生成的代码如下:

/* Model step function */void DynamicRAMdown_step(void){int32_T k;/* MATLAB Function: '<Root>/MATLAB Function1' incorporates:*  Constant: '<Root>/Constant'*/DynamicRAMdown_Y.y = 1.0;for (k = 2; k < 6; k++) {DynamicRAMdown_Y.y += DynamicRAMdown_ConstP.Constant_Value[k - 1];}/* Outport: '<Root>/y' incorporates:*  MATLAB Function: '<Root>/MATLAB Function1'*/DynamicRAMdown_Y.y /= 5.0;}

        分析上述代码可以看到,该算法的动态内存负荷只有一个k,不产生任何的额外浪费

        至此,该算法中动态内存负荷压缩的优化就完成了。

分析和应用

        动态内存负荷压缩,在不同的软件开发项目中重要性是不一样的。一种是数据量非常庞大的应用(例如图像处理),算法优化很容易会产生很大的动态内存负荷压缩。另一种是硬件资源非常小的开发平台(例如单片机),开发的算法如果不经过仔细设计,很容易就会出现动态内存负荷溢出。

        动态内存负荷压缩优化时,需要注意如下几个点:

        1、使用Simulink中的可变数组时,生成的数组大小并不是动态的,而是按照最大Size来生成的。所以使用该功能时要根据自己的应用来计算一下,尽可能把最大Size设定的小一些。

        2、Simulink中设计的算法默认都是生成double型的数据,单个数据就要占用8 Byte的内存。所以我们要根据自己的应用选择合适的数据类型,例如,当精度要求不高时把double型改成single型就能压缩一半动态内存负荷,如果数值范围不大时把int32型改成int16型就能再压缩一半动态内存负荷。

        3、Simulink中设计算法模块时,用端口形式放在外面的信号默认会被定义成全局变量,如果放在里头就是局部变量。所以我们要尽可能地把一些信号放在内部,尽量少使用全局变量,内存使用效率就会提高,也就压缩了动态内存负荷。

        4、以上建议都是从硬件负荷压缩的角度来优化软件的,与此对立的一个优化方向是软件通用性和扩展性。前者的极限优化势必会降低后者的性能,反之依然。所以,要软件设计时要综合考虑各方面的性能,多方面来平衡。

总结

        以上就是本人在嵌入式软件开发中遇到内存优化时,一些个人理解和分析的总结,首先介绍了它的背景情况,然后展示它的初始设计和优化设计,最后分析了内存优化的注意事项和应用场景。

        后续还会分享另外几个最近总结的软件优化知识点,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,上述例程使用的Demo工程,可以到笔者的主页查找和下载。


        版权声明:原创文章,转载和引用请注明出处和链接,侵权必究!

相关文章:

【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩

文章目录 背景介绍 初始代码 优化代码 分析和应用 总结 背景介绍 在一个嵌入式软件开发项目中&#xff0c;有一个使用MATLAB Function编写的算法模块&#xff0c;功能是从一个较大的数组中提取一段数据&#xff0c;然后求均值输出&#xff0c;示例如下&#xff1a; 初始代…...

python使用Flask框架开发API

Flask是一个基于Python的轻量级Web应用程序框架。 安装依赖库 pip install flask pip install werkzeug 上传接口 Python from flask import Flask, request from werkzeug.utils import secure_filenameapp Flask(__name__)app.route(/upload, methods[POST]) def uploa…...

使用hexo+gitee从零搭建个人博客

一、环境准备 1.Node.js&#xff1a;下载 | Node.js 中文网 (nodejs.cn) &#xff0c;Hexo 是基于Node.js 的博客框架 教程&#xff1a;https://blog.csdn.net/weixin_52799373/article/details/123840137 node -v npm -v 安装 Node.js 淘宝镜像加速器 &#xff08;cnpm&am…...

绝地求生:杜卡迪来了,这些摩托车技巧不学一下吗?

摩托车在远古版本和现在完全不一样&#xff0c;虽然容易翻车造就了一批玩家“摩托杀手”的外号&#xff0c;但是速度可比今天快多了。 后来在蓝洞的削弱了其加速度&#xff0c;虽然资料上写着最高时速155km/h&#xff0c;但是平时游戏中一般只能拉到110~120km/h。这里写一点摩托…...

openstack安装dashboard后登录网页显示404错误

1. 2.进入该目录vim /etc/httpd/conf.d/openstack-dashboard.conf 增加这一行 WSGIApplicationGroup %{GLOBAL} 重启httpd后就可以访问了...

c# Xml 和 Json 转换方法记录

c# xml 转 json 在C#中&#xff0c;可以使用下面几种方法将XML转换为JSON&#xff1a; 使用Newtonsoft.Json库&#xff1a; using Newtonsoft.Json; using Newtonsoft.Json.Converters; using Newtonsoft.Json.Linq; using System.Xml;// 从XML字符串转换为JSON字符串 string …...

OpenHarmony南向开发案例:【智能垃圾桶】

样例简介 智能垃圾桶可以通过数字管家应用来监测垃圾桶当前可用容量&#xff0c;提醒主人及时处理垃圾&#xff1b;通过日程管家可以实现和其他智能设备联动。 核心组件位置功能距离传感器置于垃圾桶盖内侧感应垃圾量红外传感器置于垃圾桶前端感应是否有人靠近光敏电阻开发板…...

每日一题---OJ题: 旋转数组

片头 嗨! 小伙伴们,咱们又见面啦,今天我们一起来学习一道OJ题---旋转数组 emmm,看上去好像没有那么难,我们一起来分析分析 比如: 数组里面有7个元素,分别为 1, 2, 3, 4, 5, 6, 7 , 现在我们将数组中的元素向右轮转3个位置 第一次轮转:将最后一个元素"7"放在第一个…...

基于单链表的通讯录C语言实现

关于单链表的详细了解请见博主的另一篇博客&#xff0c;本文旨在对单链表进行应用&#xff0c;采用C语言编写。 http://t.csdnimg.cn/iBpFa 一、驱动层 1.1 SList.h #pragma once#include<stdio.h> #include<stdlib.h> #include<assert.h> #include"…...

【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测

介绍一个酷炫的目标检测方式&#xff1a; 论文&#xff1a;https://arxiv.org/abs/2401.17270 代码&#xff1a;https://github.com/AILab-CVC/YOLO-World 文章目录 摘要Introduction第2章 相关工作2.1 传统目标检测2.2 开放词汇目标检测 第3章 方法3.1 预训练公式&#xff1a…...

debian安装和基本使用

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Kubernetes航线图&#xff1a;从船长到K8s掌舵者》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、Debian系统简介 2、Debian与其他Lin…...

nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)

一、安装nvm 1. 下载nvm 点击 网盘下载 进行下载 2、双击下载好的 nvm-1.1.12-setup.zip 文件 3.双击 nvm-setup.exe 开始安装 4. 选择我接受&#xff0c;然后点击next 5.选择nvm安装路径&#xff0c;路径名称不要有空格&#xff0c;然后点击next 6.node.js安装路径&#…...

优优嗨聚集团:如何优雅地解决个人债务问题,一步步走向财务自由

在快节奏的现代生活中&#xff0c;个人债务问题似乎已成为许多人不得不面对的挑战。正确处理个人债务&#xff0c;不仅关系到个人信用和财务状况&#xff0c;更是实现财务自由的重要一步。本文将为您提供一些实用的建议&#xff0c;帮助您优雅地解决个人债务问题&#xff0c;走…...

SpringCloud实用篇(四)——Nacos

Nacos nacos官方网站&#xff1a;https://nacos.io/ nacos是阿里巴巴的产品&#xff0c;现在是springcloud的一个组件&#xff0c;相比于eureka的功能更加丰富&#xff0c;在国内备受欢迎 nacos的安装 下载地址&#xff1a;https://github.com/alibaba/nacos/releases/ 启动…...

【嵌入式基础知识学习】AD/DA—数模/模数转换

AD/DA—数模/模数转换概念 数字电路只能处理二进制数字信号&#xff0c;而声音、温度、速度和光线等都是模拟量&#xff0c;利用相应的传感器&#xff08;如声音用话筒&#xff09;可以将它们转换成模拟信号&#xff0c;然后由A/D转换器将它们转换成二进制数字信号&#xff0c…...

Swift中的结构体

Swift中的结构体是一种自定义的数据类型&#xff0c;可用于存储多个相关的值。结构体可以包含属性和方法&#xff0c;从而使其具有特定的功能。 结构体与类相似&#xff0c;但有一些重要的区别。最重要的区别是&#xff0c;结构体是值类型&#xff0c;而类是引用类型。这意味着…...

Selenium - java - 屏幕截图

文档地址 Selenium 浏览器自动化项目 | Selenium 安装 <dependency><groupId>org.seleniumhq.selenium</groupId><artifactId>selenium-java</artifactId><version>4.19.1</version></dependency>使用 创建WebDriver实例 …...

【论文阅读——SplitFed: When Federated Learning Meets Split Learning】

级别CCFA 1.摘要 联邦学习&#xff08;FL&#xff09;和分割学习&#xff08;SL&#xff09;是两种流行的分布式机器学习方法。两者都采用了模型对数据的场景&#xff1b;客户端在不共享原始数据的情况下训练和测试机器学习模型。由于机器学习模型的架构在客户端和服务器之间…...

Python使用方式介绍

1.安装与版本和IDE 1.1 python2.x和python3.x区别 python2在2020已经不再维护&#xff0c;目前主流开发使用python3. 二者语法上略有区别&#xff1a;输入输出、数据处理、异常和默认编码等&#xff0c;如:python3中字符串为Unicode字符串&#xff0c;使用UTF-8编码&#xff…...

浅述python中NumPy包

NumPy&#xff08;Numerical Python&#xff09;是Python的一种开源的数值计算扩展&#xff0c;提供了多维数组对象ndarray&#xff0c;是一个快速、灵活的大数据容器&#xff0c;可以用来存储和处理大型矩阵&#xff0c;支持大量的维度数组与矩阵运算&#xff0c;并针对数组运…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...