当前位置: 首页 > news >正文

Backtrader 量化回测实践(7)——在jupyter中执行bt的samples

Backtrader 量化回测实践(7)——在jupyter中执行bt的samples

Backtrader提供了大量的测试用例,在samples目录下,测试程序主要都是用argparse解析参数,但是不能在jupyter中直接执行。

找到一个解决方法,可以方便在jupyter中执行samples中的示例。

把datas目录上传到ipython的当前路径,以calmar-test.py程序为例,简单修改程序如下:

#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,unicode_literals)import argparse
import datetimeimport backtrader as bt%matplotlib inlineclass St(bt.SignalStrategy):params = ()def __init__(self):ma1, ma2, = bt.ind.SMA(period=15), bt.ind.SMA(period=50)self.signal_add(bt.signal.SIGNAL_LONG, bt.ind.CrossOver(ma1, ma2))def next2(self):passdef runstrat(args=None):args = parse_args(args)cerebro = bt.Cerebro()# Data feed kwargskwargs = dict()# Parse from/to-datedtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):if a:strpfmt = dtfmt + tmfmt * ('T' in a)kwargs[d] = datetime.datetime.strptime(a, strpfmt)# Data feeddata0 = bt.feeds.YahooFinanceCSVData(dataname=args.data0, **kwargs)cerebro.adddata(data0)# Brokercerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))cerebro.addanalyzer(bt.analyzers.Calmar)# Sizercerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))# Strategycerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))# Executest0 = cerebro.run(**eval('dict(' + args.cerebro + ')'))[0]i = 1for k, v in st0.analyzers.calmar.get_analysis().items():print(i, ': '.join((str(k), str(v))))i += 1if args.plot:  # Plot if requested to#cerebro.plot(**eval('dict(' + args.plot + ')'))cerebro.plot(iplot=False)def parse_args(pargs=None):parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,description=('Sample Skeleton'))parser.add_argument('--data0', default='./datas/orcl-1995-2014.txt',required=False, help='Data to read in')# Defaults for datesparser.add_argument('--fromdate', required=False, default='',help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')parser.add_argument('--todate', required=False, default='',help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')parser.add_argument('--cerebro', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--broker', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--sizer', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--strat', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--plot', required=False, default='',nargs='?', const='{}',metavar='kwargs', help='kwargs in key=value format')return parser.parse_args(pargs)if __name__ == '__main__':#runstrat()#runstrat('--plot'.split())runstrat('--plot --fromdate=1998-01-01 --todate=2000-01-01'.split())

修改点如下:

    1. jupyter环境:在import 后增加 %matplotlib inline
    1. 调整数据导入路径,因为在当前路径
    parser.add_argument('--data0', default='./datas/orcl-1995-2014.txt',required=False, help='Data to read in')
  • 3.绘图参数:
    在jupyter中绘图参数
#cerebro.plot(**eval('dict(' + args.plot + ')'))
cerebro.plot(iplot=False)`
  • 4.调用参数
    通过split方法,带入调用参数。
    #runstrat()runstrat('--plot --fromdate=1998-01-01 --todate=2000-01-01'.split())

修改以上内容后,就可以直接在jupyter中执行Backtrader的示例了。

相关文章:

Backtrader 量化回测实践(7)——在jupyter中执行bt的samples

Backtrader 量化回测实践&#xff08;7&#xff09;——在jupyter中执行bt的samples Backtrader提供了大量的测试用例&#xff0c;在samples目录下&#xff0c;测试程序主要都是用argparse解析参数&#xff0c;但是不能在jupyter中直接执行。 找到一个解决方法&#xff0c;可…...

npm vs. pnpm vs. Yarn: 三者之间的区别与比较

在现代前端开发中&#xff0c;包管理工具是必不可少的一环。npm、pnpm和Yarn是三个常用的包管理工具&#xff0c;它们各有特点&#xff0c;适用于不同的场景。本文将深入讨论这三者的基本概念、特点、优势和劣势&#xff0c;并对比分析它们之间的主要区别&#xff0c;包括功能、…...

Learning Feature Sparse Principal Subspace 论文阅读

1 Abstract: 这篇论文提出了新的算法来解决特征稀疏约束的主成分分析问题&#xff08;FSPCA&#xff09;&#xff0c;该问题同时执行特征选择和PCA。现有的FSPCA优化方法需要对数据分布做出假设&#xff0c;并且缺乏全局收敛性的保证。尽管一般的FSPCA问题是NP难问题&#xff…...

Hibernate入门经典与注解式开发大全

本博文主要讲解介绍Hibernate框架&#xff0c;ORM的概念和Hibernate入门&#xff0c;相信你们看了就会使用Hibernate了! 什么是Hibernate框架&#xff1f; Hibernate是一种ORM框架&#xff0c;全称为 Object_Relative DateBase-Mapping&#xff0c;在Java对象与关系数据库之间建…...

蓝桥杯之注意事项

1.特殊求解的地方 2.一些数学公式 比如二叉树求全深度数值那道题 3.掌握有关库函数 #include<algorithm> 包含sort&#xff08;&#xff09;函数【排列函数】C sort()排序详解-CSDN博客&#xff0c;next_permutation()函数【求解全排列问题】求解数组大小sizeof(arr…...

ES6 全详解 let 、 const 、解构赋值、剩余运算符、函数默认参数、扩展运算符、箭头函数、新增方法,promise、Set、class等等

目录 ES6概念ECMAScript6简介ECMAScript 和 JavaScript 的关系ES6 与 ECMAScript 2015 的关系 1、let 、 const 、var 区别2、变量解构赋值1、数组解构赋值2、对象解构赋值3、字符串的解构赋值 3、展开剩余运算符1、**展开运算符(...)**2、**剩余运算符(...)** 4、函数的拓展函…...

c++ - 类的默认成员函数

文章目录 前言一、构造函数二、析构函数三、拷贝构造函数四、重载赋值操作符五、取地址及const取地址操作符重载 前言 默认成员函数是编译器自动生成的&#xff0c;也可以自己重写&#xff0c;自己重写之后编译器就不再生成&#xff0c;下面是深入了解这些成员函数。 一、构造…...

Java哈希查找(含面试大厂题和源码)

哈希查找&#xff08;Hash Search&#xff09;是一种基于哈希表&#xff08;Hash Table&#xff09;的数据查找方法。哈希表通过使用哈希函数将键&#xff08;Key&#xff09;映射到表中的位置来存储数据&#xff0c;从而实现快速的数据访问。哈希查找的效率通常取决于哈希函数…...

c++中常用库函数

大小写转换 islower/isupper函数 char ch1 A; char ch2 b;//使用islower函数判断字符是否为小写字母 if(islower(ch1)){cout << ch1 << "is a lowercase letter." << end1; } else{cout << ch1 << "is not a lowercase lette…...

Scrapy框架 进阶

Scrapy框架基础Scrapy框架进阶 【五】持久化存储 命令行&#xff1a;json、csv等管道&#xff1a;什么数据类型都可以 【1】命令行简单存储 &#xff08;1&#xff09;语法 Json格式 scrapy crawl 自定义爬虫程序文件名 -o 文件名.jsonCSV格式 scrapy crawl 自定义爬虫程…...

ubuntu22安装snipaste

Ubuntu 22.04 一、Snipaste 介绍和下载 Snipaste 官网下载链接: Snipaste Downloads 二、安装并使用 Snipaste # 1、进入Snipaste-2.8.9-Beta-x86_64.AppImage 目录&#xff08;根据自己下载目录&#xff09; cd /home/jack/Downloads/softwares/AppImage# 2、Snipaste-2.8.9-…...

spring-cloud微服务openfeign

Spring Cloud openfeign对Feign进行了增强&#xff0c;使其支持Spring MVC注解&#xff0c;另外还整合了Ribbon和Nacos&#xff0c;从而使得Feign的使用更加方便 优势&#xff0c;openfeign可以做到使用HTTP请求远程服务时就像洞用本地方法一样的体验&#xff0c;开发者完全感…...

小程序变更主体需要多久?

小程序迁移变更主体有什么作用&#xff1f;小程序迁移变更主体的好处有很多哦&#xff01;比如可以获得更多权限功能、公司变更或注销时可以保证账号的正常使用、收购账号后可以改变归属权或使用权等等。小程序迁移变更主体的条件有哪些&#xff1f;1、新主体必须是企业主体&am…...

19 Games101 - 笔记 - 相机与透镜

**19 ** 相机与透镜 目录 摘要一 照相机主要部分二 小孔成像与视场(FOV)三 曝光(Exposure)四 景深(Depth of Field)总结 摘要 虽说照相机与透镜属于相对独立的话题&#xff0c;但它们的确是计算机图形学当中的一部分知识。在过往的十多篇笔记中&#xff0c;我们学习的都是如…...

Flink入门学习 | 大数据技术

⭐简单说两句⭐ ✨ 正在努力的小新~ &#x1f496; 超级爱分享&#xff0c;分享各种有趣干货&#xff01; &#x1f469;‍&#x1f4bb; 提供&#xff1a;模拟面试 | 简历诊断 | 独家简历模板 &#x1f308; 感谢关注&#xff0c;关注了你就是我的超级粉丝啦&#xff01; &…...

Arthas实战教程:定位Java应用CPU过高与线程死锁

引言 在Java应用开发中&#xff0c;我们可能会遇到CPU占用过高和线程死锁的问题。本文将介绍如何使用Arthas工具快速定位这些问题。 准备工作 首先&#xff0c;我们创建一个简单的Java应用&#xff0c;模拟CPU过高和线程死锁的情况。在这个示例中&#xff0c;我们将编写一个…...

HTML制作跳动的心形网页

作为一名码农 也有自己浪漫的小心思嗷~ 该网页 代码整体难度不大 操作性较强 祝大家都幸福hhhhh 效果成品&#xff1a; 全部代码&#xff1a; <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML><HEAD><TITLE> 一个…...

如何在Odoo 17 销售应用中使用产品目录添加产品

Odoo&#xff0c;作为一个知名的开源ERP系统&#xff0c;发布了其第17版&#xff0c;新增了多项功能和特性。Odoo 17包中的一些操作简化了&#xff0c;生产力提高了&#xff0c;用户体验也有了显著改善。为了为其用户提供新的和改进的功能&#xff0c;Odoo不断进行改进和增加新…...

为什么pdf拆分出几页之后大小几乎没有变化

PDF 文件的大小在拆分出几页之后几乎没有变化可能有几个原因&#xff1a; 图像压缩: 如果 PDF 文件中包含图像&#xff0c;而这些图像已经被压缩过&#xff0c;拆分后的页面依然会保留这些压缩设置&#xff0c;因此文件大小可能不会显著变化。 文本和矢量图形: PDF 文件中的文…...

如何在 VM 虚拟机中安装 OpenEuler 操作系统保姆级教程(附链接)

一、VMware Workstation 虚拟机 若没有安装虚拟机的可以参考下篇文章进行安装&#xff1a; 博客链接https://eclecticism.blog.csdn.net/article/details/135713915 二、OpenEuler 镜像 点击链接前往官网 官网 选择第一个即可 三、安装 OpenEuler 打开虚拟机安装 Ctrl …...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...