用Skimage学习数字图像处理(021):图像特征提取之线检测(下)
本节是特征提取之线检测的下篇,讨论基于Hough变换的线检测方法。首先简要介绍Hough变换的基本原理,然后重点介绍Skimage中含有的基于Hough变换的直线和圆形检测到实现。
目录
10.4 Hough变换
10.4.1 原理
10.4.2 实现
10.4 Hough变换
Hough变换(霍夫变换)是一种在图像处理和计算机视觉中广泛使用的技术,是由Paul Hough在1962年提出。
Hough变换的一个主要优点是它对噪声和曲线间断的鲁棒性。它不仅限于检测直线,还可以用于检测圆、椭圆、三角形等多种形状。此外,Hough变换也广泛应用于计算机视觉的多个领域,如边缘检测、特征提取、模式识别等多个领域。
10.4.1 原理
Hough变换的基本原理是通过在参数空间中进行累加统计来检测图像中的基本形状,其核心思想是将图像空间中的曲线或直线变换到参数空间中,通过检测参数空间中的极值点来确定图像中曲线的描述参数,从而提取出规则的曲线。
有关原理的详细介绍,可参考相关的文献,再次不再赘述。我们重点介绍基于Skimage的Hough变换的实现。
10.4.2 实现
在Skimage中,提供了5个与Hough变换有关的函数,分别是:
- skimage.transform.hough_line:进行直线Hough变换.
- skimage.transform.hough_line_peaks:返回直线Hough变换的峰值.
- skimage.transform.hough_circle:进行圆Hough变换
- skimage.transform.hough_circle_peaks:返回圆形Hough变换的峰值.
- skimage.transform.hough_ellipse:进行椭圆Hough变换.
(1)直线检测
使用skimage.transform.hough_line()和skimage.transform.hough_line_peaks()实现直线检测:
skimage.transform.hough_line(image, theta).
skimage.transform.hough_line_peaks(hspace, angles, dists, min_distance, min_angle, threshold, num_peaks)
部分参数说明:
- image:输入图像。
- theta:Angles at which to compute the transform, in radians. Defaults to a vector of 180 angles evenly spaced in the range [-pi/2, pi/2).。
- hspace:Hough transform accumulator。Angles at which the transform is computed, in radians.
- angles:Angles at which the transform is computed, in radians。
- dists:输入图像。
- min_distance:输入图像。
- min_angle:输入图像。
- num_peaks:输入图像。
- hspace:输入图像。
返回值:
- hspace:ndarray of uint64, shape (P, Q),Hough transform accumulator.
- angles:Angles at which the transform is computed, in radians。
以下是官方提供的一个直线检测的实例:
import numpy as npfrom skimage.transform import hough_line, hough_line_peaks
from skimage.feature import canny
from skimage.draw import line as draw_line
from skimage import dataimport matplotlib.pyplot as plt
from matplotlib import cm# Constructing test image
image = np.zeros((200, 200))
idx = np.arange(25, 175)
image[idx, idx] = 255
image[draw_line(45, 25, 25, 175)] = 255
image[draw_line(25, 135, 175, 155)] = 255# Classic straight-line Hough transform
# Set a precision of 0.5 degree.
tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360, endpoint=False)
h, theta, d = hough_line(image, theta=tested_angles)# Generating figure 1
fig, axes = plt.subplots(1, 3, figsize=(15, 6))
ax = axes.ravel()ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[0].set_axis_off()angle_step = 0.5 * np.diff(theta).mean()
d_step = 0.5 * np.diff(d).mean()
bounds = [np.rad2deg(theta[0] - angle_step),np.rad2deg(theta[-1] + angle_step),d[-1] + d_step,d[0] - d_step,
]
ax[1].imshow(np.log(1 + h), extent=bounds, cmap=cm.gray, aspect=1 / 1.5)
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
ax[1].axis('image')ax[2].imshow(image, cmap=cm.gray)
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_axis_off()
ax[2].set_title('Detected lines')for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):(x0, y0) = dist * np.array([np.cos(angle), np.sin(angle)])ax[2].axline((x0, y0), slope=np.tan(angle + np.pi / 2))plt.tight_layout()
plt.show()
以下是处理结果示例:

(2)圆形检测
使用skimage.transform.hough_circle()和skimage.transform.hough_circle_peaks()检测圆形:
skimage.transform.hough_circle(image, radius, normalize, full_output)
skimage.transform.hough_circle_peaks(hspaces, radii, min_xdistance, min_ydistance, threshold, num_peaks, total_num_peaks, normalize)
以下是官方提供的一个圆形检测的实例:
import numpy as np
import matplotlib.pyplot as pltfrom skimage import data, color
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.feature import canny
from skimage.draw import circle_perimeter
from skimage.util import img_as_ubyte# Load picture and detect edges
image = img_as_ubyte(data.coins()[160:230, 70:270])
edges = canny(image, sigma=3, low_threshold=10, high_threshold=50)# Detect two radii
hough_radii = np.arange(20, 35, 2)
hough_res = hough_circle(edges, hough_radii)# Select the most prominent 3 circles
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=3)# Draw them
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 4))
image = color.gray2rgb(image)
for center_y, center_x, radius in zip(cy, cx, radii):circy, circx = circle_perimeter(center_y, center_x, radius, shape=image.shape)image[circy, circx] = (220, 20, 20)ax.imshow(image, cmap=plt.cm.gray)
plt.show()
以下是处理结果示例:

(3)椭圆检测
使用skimage.transform.hough_ellipse()检测椭圆形:
skimage.transform.hough_ellipse(image, threshold, accuracy, min_size, max_size)
以下是官方提供的一个椭圆检测的实例:
import matplotlib.pyplot as pltfrom skimage import data, color, img_as_ubyte
from skimage.feature import canny
from skimage.transform import hough_ellipse
from skimage.draw import ellipse_perimeter# Load picture, convert to grayscale and detect edges
image_rgb = data.coffee()[0:220, 160:420]
image_gray = color.rgb2gray(image_rgb)
edges = canny(image_gray, sigma=2.0, low_threshold=0.55, high_threshold=0.8)# Perform a Hough Transform
result = hough_ellipse(edges, accuracy=20, threshold=250, min_size=100, max_size=120)
result.sort(order='accumulator')# Estimated parameters for the ellipse
best = list(result[-1])
yc, xc, a, b = (int(round(x)) for x in best[1:5])
orientation = best[5]# Draw the ellipse on the original image
cy, cx = ellipse_perimeter(yc, xc, a, b, orientation)
image_rgb[cy, cx] = (0, 0, 255)
# Draw the edge (white) and the resulting ellipse (red)
edges = color.gray2rgb(img_as_ubyte(edges))
edges[cy, cx] = (250, 0, 0)fig2, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4), sharex=True, sharey=True
)ax1.set_title('Original picture')
ax1.imshow(image_rgb)ax2.set_title('Edge (white) and result (red)')
ax2.imshow(edges)plt.show()
以下是处理结果示例:

参考文献:
- Duda, R. O. and P. E. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures,” Comm. ACM, Vol. 15, pp. 11-15 (January, 1972)
- C. Galamhos, J. Matas and J. Kittler,”Progressive probabilistic Hough transform for line detection”, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999.
(未完待续)
相关文章:
用Skimage学习数字图像处理(021):图像特征提取之线检测(下)
本节是特征提取之线检测的下篇,讨论基于Hough变换的线检测方法。首先简要介绍Hough变换的基本原理,然后重点介绍Skimage中含有的基于Hough变换的直线和圆形检测到实现。 目录 10.4 Hough变换 10.4.1 原理 10.4.2 实现 10.4 Hough变换 Hough变换&…...
ArduPilot飞控之Gazebo + SITL + MP的Jetson Orin环境搭建
ArduPilot飞控之Gazebo SITL MP的Jetson Orin环境搭建 1. 源由2. Linux环境整理3. 安装Gazebo环境3.1 安装Gazebo3.2 安装插件3.3 配置插件3.4 测试Gazebo 4. 安装Arudpilot-SITL环境4.1 克隆工程4.2 编译准备4.3 环境配置4.4 配置编译4.5 测试运行 5. 测试运行6. 参考资料 1…...
前端错误监控的方法有哪些
前端错误监控是指通过各种手段收集、分析和处理前端应用运行中发生的错误 常用的前端错误监控的方法有 使用 try catch 方法 捕获特定代码块中的错误多用于处理特定函数或代码段可能抛出的异常,尤其是异步代码网络请求错误监控 promise.catchtry catch全局错误处理…...
✌粤嵌—2024/3/11—跳跃游戏
代码实现: 方法一:递归记忆化 int path; int used[10000];bool dfs(int *nums, int numsSize) {if (path numsSize - 1) {return true;}for (int i 1; i < nums[path]; i) {if (used[path i]) {continue;}path i;used[path] 1;if (dfs(nums, num…...
Docker入门实战教程
文章目录 Docker引擎的安装Docker比vm虚拟机快 Docker常用命令帮助启动类命令镜像命令docker imagesdocker searchdocker pulldocker system dfdocker rmi 容器命令redis前台交互式启动redis后台守护式启动Nginx容器运行ubuntu交互式运行tomcat交互式运行对外暴露访问端口 Dock…...
数据结构初阶:二叉树(一)
树概念及结构 树的概念 树是一种 非线性 的数据结构,它是由 n ( n>0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。 有一个特殊的结点&a…...
基于逻辑回归和支持向量机的前馈网络进行乳腺癌组织病理学图像分类
CNN(卷积神经网络)通过使用反向传播方法来学习特征,这种方法需要大量的训练数据,并且存在梯度消失问题,从而恶化了特征学习。 CNN卷积神经网络 CNN由一个多层神经网络组成,该网络从标记的训练数据集中学习…...
35-4 fastjson漏洞复现
环境准备:35-2 fastjson反序列化漏洞介绍 及漏洞环境搭建-CSDN博客 fastjson_tool.jar下载:fastjson_rce_tool: fastjson命令执行自动化利用工具, remote code execute,JNDI服务利用工具 RMI/LDAP (gitee.com) 一、攻击机kali开启nc监听6666端口(或其他端口也行,只要不…...
Qt-控件篇
QPushbutton 1、设置按钮文本 pushButton->setText("按钮"); 2、获取按钮文本 pushButton->text(); 3、设置按钮的大小为特定值(宽度和高度) pushButton->setFixedSize(width,height); 4、设置按钮悬停时的工具提示文本。 pushButto…...
实现 Table 的增加和删除,不依赖后端数据回显
需求 删除前 删除后 分析 首先写一个 Table <a-card style"width:100%"><template#extra><a-button type"text" click"addSelectItem" style"margin-right: 5px">添加</a-button><a-button type&quo…...
个人网站开发记录(七)——三系统后端nodejs+express
前言 这种已经完全工程化了的()后端其实已经没啥好说的了,因为就是单纯的写接口然后调用接口就完事了! 正文 唯一值得一提的大概是我在写这个系统的时候搞了https的链接,具体来说就是先申请一个ssl证书,…...
C#入门理解设计模式的6大原则
**设计模式的原则是指导设计模式创建和应用的基本原则,这些原则有助于创建灵活、可维护且可扩展的软件系统。**1. 单一职责原则(Single Responsibility Principle, SRP) 单一职责原则指出一个类应该只有一个引起它变化的原因。换句话说&…...
Linux如何切换root用户
Linux如何切换root用户 sudosudo -i想一直使用root权限,可以使用su命令 sudo 执行命令后,输入用户密码可以短暂的获取root权限 sudo -i 通过此命令直接输入当前管理员用户的密码就可以进入root用户了 想一直使用root权限,可以使用su命令 …...
uniapp小程序编译报错
说明 微信小程序编译每次都出现[ project.config.json 文件内容错误] project.config.json: libVersion 字段需为 string, 解决 找到manifest.json文件 添加:"libVersion": "latest",重新编译即可。...
van-uploader 在app内嵌的webview中的一些坑
问题: 部分版本在ios 中没有问题,但是安卓中不触发图片选择和拍照(之前是可以的,可能是没有锁定版本,重新发版导致的)。在ios中下拉文案是英文,html配置lang等于 zh 也没有用,ios里…...
使用Kotlin进行全栈开发 Ktor+Kotlin/JS
首发于Enaium的个人博客 前言 本文将介绍如何使用 Kotlin 全栈技术栈KtorKotlin/JS来构建一个简单的全栈应用。 准备工作 创建项目 首先我们需要创建一个Kotlin项目,之后继续在其中新建两个子项目,一个是Kotlin/JS项目,另一个是Ktor项目。…...
数据结构_带头双向循环链表
List.h 相较于之前的顺序表和单向链表,双向链表的逻辑结构稍微复杂一些,但是在实现各种接口的时候是很简单的。因为不用找尾,写起来会舒服一点。(也可能是因为最近一直在写这个的原因) #pragma once #include<std…...
常见的垃圾回收器(下)
文章目录 G1ShenandoahZGC 常见垃圾回收期(上) G1 参数1: -XX:UseG1GC 打开G1的开关,JDK9之后默认不需要打开 参数2:-XX:MaxGCPauseMillis毫秒值 最大暂停的时间 回收年代和算法 ● 年轻代老年代 ● 复制算法 优点…...
网桥的原理
网桥的原理 1.1 桥接的概念 简单来说,桥接就是把一台机器上的若干个网络接口“连接”起来,其结果是,其中一个网口收到的报文会被复制给其他网口并发送出去。以使得网口之间的报文能够互相转发。 交换机有若干个网口,并且这些…...
STM32 CAN过滤器细节
STM32 CAN过滤器细节 简介 每组筛选器包含2个32位的寄存器,分别为CAN_FxR1和CAN_FxR2,它们用来存储要筛选的ID或掩码 四种模式 模式说明32位掩码模式CAN_FxR1存储ID, CAN_FxR2存储哪个位必须要与CAN_FxR1中的ID一致 , 2个寄存器…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
CppCon 2015 学习:REFLECTION TECHNIQUES IN C++
关于 Reflection(反射) 这个概念,总结一下: Reflection(反射)是什么? 反射是对类型的自我检查能力(Introspection) 可以查看类的成员变量、成员函数等信息。反射允许枚…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...
华为云Flexus+DeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手
华为云FlexusDeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手 一、构建知识库问答助手引言二、构建知识库问答助手环境2.1 基于FlexusX实例的Dify平台2.2 基于MaaS的模型API商用服务 三、构建知识库问答助手实战3.1 配置Dify环境3.2 创建知识库问答助手3.3 使用知…...
