当前位置: 首页 > news >正文

(done) LSTM 详解 (包括它为什么能缓解梯度消失)

RNN 参考视频:https://www.bilibili.com/video/BV1e5411K7oW/?p=2&spm_id_from=pageDriver&vd_source=7a1a0bc74158c6993c7355c5490fc600

LSTM 参考视频:https://www.bilibili.com/video/BV1qM4y1M7Nv?p=5&vd_source=7a1a0bc74158c6993c7355c5490fc600

斯坦福教授讲解的 RNN 和 LSTM:https://www.bilibili.com/video/BV1s64y1P7Qm?p=9&vd_source=7a1a0bc74158c6993c7355c5490fc600 (这个视频并没有提到 LSTM 的反向传播推导,skip)


先来复习一下 RNN,以下是 RNN 网络模型结构的示图:
在这里插入图片描述

需要注意的是,RNN 神经网络中的激活函数通常使用 tanh,原因参考这篇博客 【sigmod Relu tanh三种常见的激活函数】
链接在:https://blog.csdn.net/purple_love/article/details/134487378


首先要理解 LSTM 的 motivation:已知 RNN 模型能够处理时间序列信息。但是它有一个问题,RNN 模型在进行反向传播算法训练的时候,对于距离 “cur_time” 较远的信息存在 “梯度消失” 问题,所以 RNN 只具备短期记忆、不具备长期记忆。此外,RNN 也很难区分哪些信息是重要的,哪些信息是不重要的。因此,需要对 RNN 模型进行改良。而其中,最成功的改良产品就是 LSTM。

如下图,是 LSTM 的网络结构
在这里插入图片描述
可以和 RNN 的网络结构对比一下:
在这里插入图片描述

为了理解 LSTM,我们要同时理解它的前向传播过程和反向传播过程,让我们看看下面的三张图片:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如下图是对 LSTM 的反向传播的手算推导,可以证明 LSTM 能够缓解梯度消失问题
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

(done) LSTM 详解 (包括它为什么能缓解梯度消失)

RNN 参考视频:https://www.bilibili.com/video/BV1e5411K7oW/?p2&spm_id_frompageDriver&vd_source7a1a0bc74158c6993c7355c5490fc600 LSTM 参考视频:https://www.bilibili.com/video/BV1qM4y1M7Nv?p5&vd_source7a1a0bc74158c6993c7355c5…...

springboot使用研究

map-underscore-to-camel-case: true 开启驼峰命名 GetMapping("/userInfo")public Result<Users> userInfo(RequestHeader(name "Authorization") String token,HttpServletResponse response) {Map<String, Object> map JwtUtil.parseT…...

老旧房屋用电线路故障引起的电气火灾预防对策​

摘 要&#xff1a;在我国新农村建设方针指引下&#xff0c;农村地区的发展水平有了显著提高。在农村经济发展中&#xff0c;我们也要认识到其中存在的风险隐患问题&#xff0c;其中重要的就是火灾事故。火灾事故给农村发展带来的不利影响&#xff0c;不仅严重威胁到农村群众的生…...

OpenAI发布GPT-4.0使用指南

大家好&#xff0c;ChatGPT 自诞生以来&#xff0c;凭借划时代的创新&#xff0c;被无数人一举送上生成式 AI 的神坛。在使用时&#xff0c;总是期望它能准确理解我们的意图&#xff0c;却时常发现其回答或创作并非百分之百贴合期待。这种落差可能源于我们对于模型性能的过高期…...

【WEEK11】学习目标及总结【Spring Boot】【中文版】

学习目标&#xff1a; 学习SpringBoot 学习内容&#xff1a; 参考视频教程【狂神说Java】SpringBoot最新教程IDEA版通俗易懂员工管理系统 页面国际化登录功能展示员工列表增加员工修改员工信息删除及404处理 学习时间及产出&#xff1a; 第十一周MON~SAT 2024.5.6【WEEK11】…...

Unity 性能优化之图片优化(八)

提示&#xff1a;仅供参考&#xff0c;有误之处&#xff0c;麻烦大佬指出&#xff0c;不胜感激&#xff01; 文章目录 前言一、可以提前和美术商量的事1.避免内存浪费&#xff08;UI图片&#xff0c;不是贴图&#xff09;2.提升图片性能 二、图片优化1.图片Max Size修改&#x…...

C++类细节,面试题02

文章目录 2. 虚函数vs纯虚函数3. 重写vs重载vs隐藏3.1. 为什么C可以重载&#xff1f; 4. 类变量vs实例变量5. 类方法及其特点6. 空类vs空结构体6.1. 八个默认函数&#xff1a;6.2. 为什么空类占用1字节 7. const作用7.1 指针常量vs常量指针vs常量指针常量 8. 接口vs抽象类9. 浅…...

Stylus的引入

Stylus是一个CSS预处理器&#xff0c;它允许开发者使用更高级的语法来编写CSS&#xff0c;并提供了一些额外的功能来简化和增强CSS的编写过程。以下是关于Stylus的详解和引入方法的详细介绍&#xff1a; 一、Stylus的详解 特点和功能&#xff1a; 变量&#xff1a;允许你定义…...

前端框架-echarts

Echarts 项目中要使用到echarts框架&#xff0c;从零开始在csdn上记笔记。 这是一个基础的代码&#xff0c;小白入门看一下 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" co…...

【StarRocks系列】 Trino 方言支持

我们在之前的文章中&#xff0c;介绍了 Doris 官方提供的两种方言转换工具&#xff0c;分别是 sql convertor 和方言 plugin。StarRocks 目前同样也提供了类似的方言转换功能。本文我们就一起来看一下这个功能的实现与 Doris 相比有何不同。 一、Trino 方言验证 我们可以通过…...

【2024最新华为OD-C卷试题汇总】URL拼接 (100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; 文章目录 前…...

【ARM 嵌入式 C 字符串系列 23.7 -- C 实现函数 isdigit 和 isxdigit】

请阅读【嵌入式开发学习必备专栏 】 文章目录 isdigit 和 isxdigit C代码实现实现 isdigit实现 isxdigit使用示例 isdigit 和 isxdigit C代码实现 在C语言中&#xff0c;isdigit和isxdigit函数用于检查一个字符是否分别为十进制数字或十六进制数字。以下是这两个函数的简单实现…...

三分钟了解计算机网络核心概念-数据链路层和物理层

计算机网络数据链路层和物理层 节点&#xff1a;一般指链路层协议中的设备。 链路&#xff1a;一般把沿着通信路径连接相邻节点的通信信道称为链路。 MAC 协议&#xff1a;媒体访问控制协议&#xff0c;它规定了帧在链路上传输的规则。 奇偶校验位&#xff1a;一种差错检测方…...

数据结构===堆

文章目录 概要堆2条件大顶堆小顶堆 堆的实现插入元素删除堆顶元素 堆代码小结 概要 堆&#xff0c;有趣的数据结构。 那么&#xff0c;如何实现一个堆呢&#xff1f; 堆 堆&#xff0c;有哪些重点&#xff1a; 满足2条件大顶堆小顶堆 2条件 2条件&#xff1a; 堆是一个…...

AAA、RADIUS、TACACS、Diameter协议介绍

准备软考高级时碰到的一个概念&#xff0c;于是搜集网络资源整理得出此文。 概述 AAA是Authentication、Authorization、Accounting的缩写简称&#xff0c;即认证、授权、记帐。Cisco开发的一个提供网络安全的系统。AAA协议决定哪些用户能够访问服务&#xff0c;以及用户能够…...

Nacos高频面试题及参考答案(2万字长文)

目录 Nacos是什么?它的主要功能有哪些? Nacos在微服务架构中扮演什么角色?...

CMakeLists.txt语法规则:条件判断中表达式说明四

一. 简介 前面学习了 CMakeLists.txt语法中的 部分常用命令&#xff0c;常量变量&#xff0c;双引号的使用。 前面几篇文章也简单了解了 CMakeLists.txt语法中的条件判断&#xff0c;文章如下&#xff1a; CMakeLists.txt语法规则&#xff1a;条件判断说明一-CSDN博客 CMa…...

Hive概述

Hive简介 Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据. 它是Facebook在2008年8月开源的一个数据仓库框架,提供了类似于SQL语法的HQL(HiveSQL)语句作为数据访问接口. Hive可以做复查统计分析之类的工作; 利用hdfs的存储空间,进行结构化数据的存储; 利…...

buuctf-misc-33.[BJDCTF2020]藏藏藏1

33.[BJDCTF2020]藏藏藏1 题目&#xff1a;藏了很多层&#xff0c;一层一层的剥开 常规思路&#xff0c;先使用010打开一下看看 binwalk不行用foremost 发现是pk文件也就是压缩包&#xff0c;并且包含了docx文件 这不binwalk分离一下文件&#xff1f;虽然可以看出有隐藏文件&…...

golang 基础知识细节回顾

之前学习golang的速度过于快&#xff0c;部分内容有点囫囵吞枣的感觉&#xff0c;写gorm过程中有很多违反我常识的地方&#xff0c;我通过复习去修正了我之前认知错误和遗漏的地方。 itoa itoa自增的作用在编辑error code时候作用很大&#xff0c;之前编辑springboot的error c…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...