当前位置: 首页 > news >正文

笔记2:cifar10数据集获取及pytorch批量处理

(1)cifar10数据集预处理

CIFAR-10是一个广泛使用的图像数据集,它由10个类别的共60000张32x32彩色图像组成,每个类别有6000张图像。
CIFAR-10官网
以下为CIFAR-10数据集data_batch_*表示训练集数据,test_batch表示测试集数据
在这里插入图片描述
预处理结果(将CIFAR-10保存为图片格式)
在这里插入图片描述

#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: LIFEI
@time: 2024/5/8 15:00 
@file: 加载cifar10数据.py
@project: 深度学习(4):深度神经网络(DNN)
@describe: TEXT
@# ------------------------------------------(one)--------------------------------------
@# ------------------------------------------(two)--------------------------------------
"""
import glob
import pickle
import numpy as np
import cv2 as
import os
#%% md
cifar10官网处理函数:
#%%
def unpickle(file):with open(file, 'rb') as fo:dict = pickle.load(fo, encoding='bytes')return dict
#%% md
利用上面的函数进行读取数据:
#%%
label = ["airplane","automobile", "bird","cat", 'deer',"dog","frog","horse","ship","truck"]  #标签矩阵
filepath = glob.glob("../../test_doucments/cifar-10-batches-py/data_batch_*") # 获取当前文件的路径,返回路径矩阵,获取test数据集时将data_batch——*改为test_batch*
write_path =["./train","./test"] #
print(filepath)
for file in filepath:if not file:print("空集出错")else:# print(file)data_dic = unpickle(file) # 将二进制表示形式转换回 Python 对象的反序列化过程,结果为字节型数据# print(data_dic.keys()) #此处的keys主要有b"data",b"labels",b"filenames"index = 0for im_data in data_dic[b"data"]:  # 遍历影像矩阵数据im_label = data_dic[b"labels"][index] # 赋值标签数据im_filename = data_dic[b"filenames"][index] # 赋值影像名字index +=1# print(f"图像的文件名为:{im_filename}\n",f"图像的所属标签为:{im_label}\n",f"图像的矩阵数据为:{im_data}\n")#开始存放数据im_label_name = label[im_label]im_data_data = np.reshape(im_data,(3,32,32)) # 将影像矩阵数据转换为图像形式# 由于需要opencv进行写出图像,因此需要转化通道im_data_data = np.transpose(im_data_data,(1,2,0))imgname = f"当前图像名称{im_label},所属标签{im_label_name}"cv.imshow(str( im_label_name),cv.resize(im_data_data,(500,500))) # 将显示时的图像变大,图像数据本身大小不变cv.waitKey(0)cv.destroyAllWindows()#创建文件夹for path in write_path:if not os.path.exists("{}/{}".format(path,im_label_name)): #查看存储路径中的文件夹是否存在os.mkdir("{}/{}".format(path,im_label_name)) # 没有就创建文件else:breakcv.imwrite("{}/{}/{}".format(write_path[0],im_label_name,str(im_filename,'utf-8')),im_data_data)# #write_path[1]写出测试数据的时候将write_path[0]改为write_path[1]
#%% md
将cifar10数据转为图片格式并保存

(2)利用pytorch将图像转为张量数据

或是批量读取训练集和测试集数据
在这里插入图片描述

#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: LIFEI
@time: 2024/5/8 15:00 
@file: 加载cifar10数据.py
@project: 深度学习(4):深度神经网络(DNN)
@describe: TEXT
@# ------------------------------------------(one)--------------------------------------
@# ------------------------------------------(two)--------------------------------------
"""
# 导入库
import glob
from torchvision import transforms
from torch.utils.data import Dataset,DataLoader
import cv2 as cv
# DataLoader参考网址https://blog.csdn.net/sazass/article/details/116641511from PIL import Imagelabel_name = ["airplane","automobile", "bird","cat", 'deer',"dog","frog","horse","ship","truck"]
label_list = {} # 创建一个字典用于存储标签和下标
index = 0
for name in label_name:  # 也可以采用for index,name in enumerate(label_name)label_list[name] = index # 字典的常规赋值操作index += 1def default_loder(path):# return Image.open(path).convert("RGB") # 也可采用opencv读取img = cv.imread(path)return cv.cvtColor(img,cv.COLOR_BGR2RGB)# 定义训练集数据的增强   下面的Compose表示拼接需要增强的操作
train_transform = transforms.Compose([transforms.RandomCrop(28,28), #进行随机裁剪为28*28大小transforms.RandomHorizontalFlip(), #垂直方向翻转transforms.RandomVerticalFlip(), #水平方向的翻转transforms.RandomRotation(90), #随机旋转90度transforms.RandomGrayscale(0.1), #灰度转化transforms.ColorJitter(0.3,0.3,0.3,0.3), #随机颜色增强transforms.ToTensor() #将数据转化为张量数据
])# 定义pytorh的dataset类
class MyData(Dataset):def __init__(self,im_list,transform = None,loder = default_loder):     #初始化函数super(MyData,self).__init__() #初始化这个类# 获取图片的路径以及标签号images = []for item_data in im_list:# 注意下面这一步,split("\\")根据不同的操作系统会不相同,有的是"/"img_label_name = item_data.split("\\")[-2] #通过遍历每一个路径进行获取当前图片的文字标签images.append([item_data,label_list[img_label_name]])self.images = imagesself.tranform =transformself.loder = loderdef __getitem__(self, index_num): # 此处的index_num是在训练的时候反复传进来的值img_path , img_label = self.images[index_num] #这里的img_data = self.loder(img_path)  # 这里用到了self.loder(path)==>default_loder(path)外置函数if self.tranform is not None: # 判断数据是否增强img_data = self.tranform(img_data)return img_data,img_labeldef __len__(self):return len(self.images)train_list = glob.glob("./train/*/*.png") # glob.glob 获取改路径下的所有文件路径并返回为列表
test_list = glob.glob("./test/*/*.png")train_dataset = MyData(train_list,transform = train_transform)
test_dataset = MyData(test_list,transform = transforms.ToTensor()) #测试集无需进行图像增强操作,直接转为张量train_data_loder = DataLoader(dataset =train_dataset,batch_size=6,shuffle=True,num_workers=4)
test_data_loder = DataLoader(dataset =test_dataset,batch_size=6,shuffle=False,num_workers=4)
print(f"训练集的大小:{len(train_dataset)}")
print(f"测试集的大小:{len(test_dataset)}")

注:以上代码非原创,仅供个人记录学习笔记,若有侵权,请我联系删除

相关文章:

笔记2:cifar10数据集获取及pytorch批量处理

(1)cifar10数据集预处理 CIFAR-10是一个广泛使用的图像数据集,它由10个类别的共60000张32x32彩色图像组成,每个类别有6000张图像。 CIFAR-10官网 以下为CIFAR-10数据集data_batch_*表示训练集数据,test_batch表示测试…...

FSD自动驾驶泛谈

特斯拉的FSD(Full-Self Driving,全自动驾驶)系统是特斯拉公司研发的一套完全自动驾驶系统。旨在最终实现车辆在多种驾驶环境下无需人类干预的自动驾驶能力。以下是对FSD系统的详细探讨: 系统概述 FSD是特斯拉的自动驾驶技术&…...

golang获取变量动态类型

类型断言:data.(Type) 类型断言是最常用的获取变量动态类型的方法之一。允许在运行时将接口值转换为其具体类型。 data 是一个接口类型的变量。 Type 是一个具体的类型。 这个表达式的含义是,如果 data 的底层值是 Type 类型,那么 value 将接…...

外企接受大龄程序员吗?

本人知乎账号同公众号:老胡聊Java,欢迎留言并咨询 亲身体会外企经历所见所闻,外企能接受大龄程序员。 1 大概是10年的时候,进一家知名外企,和我一起进的一位manager,后来听下来,年龄35&#xf…...

【DevOps】掌控云端:Google Cloud SDK 快速上手

一、Google Cloud SDK Google Cloud SDK (Software Development Kit) 是一组工具,包括 gcloud、gsutil 和 bq,用于通过命令行或自动化脚本访问和管理 Google Cloud 资源和服务。以下是 Cloud SDK 的详细介绍: 1、gcloud 命令行工具 gcloud 是 Cloud SDK 的核心组件,用于管理 …...

【Unity 踩坑系列】配置VScode环境Downloading the.NET Runtime Failed to download.NET 7.0.9installation timed out

1.问题描述 在最近使用Unity配置VScode开发环境时,总会出现以下的情况。(很多朋友其实本地已经自己安装好了.net环境 PS:可能各种版本.net 6.0 - .net 8.0都试过安装了 但就是会自动下载最新版本的.net ) Downloading the .NET Runtime. Downloading .NET versio…...

深入了解 NumPy:深度学习中的数学运算利器

文章目录 1. 导入NumPy2. 创建NumPy数组3. 数组的算术运算4. N维数组4.1 创建和操作多维数组4.2 高维数组 5. NumPy的广播功能5.1 基本广播示例5.2 更复杂的广播示例 6. 访问数组元素6.1 基于索引的访问6.2 遍历数组6.3 基于条件的访问6.4 高级索引6.5 性能考虑 在深度学习和数…...

鸿蒙开发接口Ability框架:【@ohos.ability.particleAbility (particleAbility模块)】

particleAbility模块 particleAbility模块提供了Service类型Ability的能力,包括启动、停止指定的particleAbility,获取dataAbilityHelper,连接、断开当前Ability与指定ServiceAbility等。 说明: 本模块首批接口从API version 7开…...

Flutter笔记:Widgets Easier组件库(8)使用图片

Flutter笔记 Widgets Easier组件库(8):使用图片 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress o…...

商务分析方法与工具(五):Python的趣味快捷-文件和文件夹操作自动化

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊! 喜欢我的博客的话,记得…...

codeforce#938 (div3) 题解

C. Inhabitant of the Deep Sea 数组第一个元素减一下&#xff0c;最后一个元素减一下&#xff0c;一共能减k次&#xff0c;问有多少元素能减到0.细节模拟我是傻逼&#xff0c;有问题建议直接看tc面像tc编程 #include <iostream> #include <string.h> #include &…...

【Docker】如何注册Hub账号并上传镜像到Hub仓库

一、创建Hub账户 浏览器访问&#xff1a;hub.docker.com 点击【Sign up】注册账号 输入【邮箱】【用户名】【密码】 ps&#xff1a;用户名要有字母数字&#xff1b;订阅不用勾选 点击【Sign up】注册即可 点击【Sign in】登录账号 输入【邮箱】【密码】 点击【Continue】登录 二…...

[初阶数据结构】单链表

前言 &#x1f4da;作者简介&#xff1a;爱编程的小马&#xff0c;正在学习C/C&#xff0c;Linux及MySQL。 &#x1f4da;本文收录于初阶数据结构系列&#xff0c;本专栏主要是针对时间、空间复杂度&#xff0c;顺序表和链表、栈和队列、二叉树以及各类排序算法&#xff0c;持…...

项目使用git开发流程

第一步 项目初期&#xff1a;领导负责的工作 01 创建仓库&#xff1a;在码云上面创建仓库地址&#xff0c;创建完成后点击初始化README&#xff1a;郝陶涛/vue-tea 02 领导在桌面上将代码克隆下来&#xff1a;将代码克隆下来之后&#xff0c;切换到代码内部&#xff0c;使用g…...

Day 28 MySQL的数据备份与恢复

数据备份及恢复 1.概述 ​ 所有备份数据都应放在非数据库本地&#xff0c;而且建议有多份副本 备份&#xff1a; 能够防止由于机械故障以及人为误操作带来的数据丢失&#xff0c;例如将数据库文件保存在了其它地方 冗余&#xff1a; 数据有多份冗余&#xff0c;但不等备份&…...

PackageKit的使用(三)疑问篇

本篇主要是一些疑问归纳&#xff0c;不做具体的函数分析&#xff0c;但是会给出关键点&#xff0c;查看源码就会很清楚了 apt source PackageKit 1. org.freedesktop.PackageKit D-Bus 接口介绍 D-Bus API Reference: PackageKit Reference Manual c库的接口可以看源码。 2.…...

【Linux】17. 进程间通信 --- 管道

1. 什么是进程间通信(进程间通信的目的) 数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程 资源共享&#xff1a;多个进程之间共享同样的资源。 通知事件&#xff1a;一个进程需要向另一个或一组进程发送消息&#xff0c;通知它&#xff08;它们&#xff09;发生了…...

有哪些有效的复习方法可以帮助备考软考?

软考目前仍然是一个以记忆为主、理解为辅的考试。学过软考的朋友可能会感到困惑&#xff0c;因为软考的知识在日常工作中有许多应用场景&#xff0c;需要理解的地方也很多。但为什么我说它是理解为辅呢&#xff1f;因为这些知识点只要记住了&#xff0c;都不难理解&#xff0c;…...

【MySQL | 第九篇】重新认识MySQL锁

文章目录 9.重新认识MySQL锁9.1MySQL锁概述9.2锁分类9.2.1锁的粒度9.2.2锁的区间9.2.3锁的性能9.2.4锁的级别 9.3拓展&#xff1a;意向锁9.3.1意向锁概述9.3.2意向锁分类9.3.3意向锁作用&#xff08;1&#xff09;意向锁的兼容互斥性&#xff08;2&#xff09;例子1&#xff08…...

含义:理财风险等级R1、R2、R3、R4、R5

理财风险等级R1、R2、R3代表什么&#xff0c;为什么R1不保本&#xff0c;R2可能亏损 不尔聊投资https://author.baidu.com/home?frombjh_article&app_id1704141696580953 我们购买理财产品的时候&#xff0c;首先都会看到相关产品的风险等级。风险等级约定俗成有5级&…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...

【技巧】dify前端源代码修改第一弹-增加tab页

回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码&#xff0c;在知识库增加一个tab页"HELLO WORLD"&#xff0c;完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...