Sarcasm detection论文解析 |使用 BERT 进行中间任务迁移学习的刺检测
论文地址
论文地址:https://www.mdpi.com/2227-7390/10/5/844#/
github:edosavini/TransferBertSarcasm (github.com)
论文首页
笔记框架
使用 BERT 进行中间任务迁移学习的讽刺检测
📅出版年份:2022
📖出版期刊:Mathematics
📈影响因子:2.4
🧑文章作者:Savini Edoardo,Caragea Cornelia
📍 期刊分区:Number: 5 Publisher: Multidisciplinary Digital Publishing Institute JCR分区: Q1 中科院分区升级版: 数学3区 中科院分区基础版: 数学2区 影响因子: 2.4 5年影响因子: 2.3 南农高质量: A
🔎 摘要:
讽刺检测在自然语言处理中发挥着重要作用,因为它可以影响许多应用程序的性能,包括情感分析、意见挖掘和立场检测。尽管讽刺检测取得了实质性进展,但研究结果分散在数据集和研究中。在本文中,我们调查了当前的最新技术,并提出了基于 BERT 预训练语言模型的讽刺检测的强大基线。我们通过在目标任务上微调之前对相关中间任务进行微调来进一步改进我们的 BERT 模型。具体来说,依靠讽刺与(隐含的负面)情绪和情感之间的相关性,我们探索了一种迁移学习(Transfer Learning)框架,该框架使用情感分类和情感检测作为单独的中间任务,将知识注入讽刺检测的目标任务中。在具有不同特征的三个数据集上的实验结果表明,基于 BERT 的模型优于许多先前的模型。
🌐 研究目的:
我们的目的是分析 BERT 和使用 BERT 的中间任务迁移学习在讽刺检测任务上的有效性,并找到一个能够准确预测从论坛到微博等多种社交平台中讽刺的神经框架。
📰 研究背景:
尽管讽刺检测取得了实质性进展,但研究结果分散在数据集和研究中。
🔬 研究方法:
基于 BERT 预训练语言模型,探索了一种迁移学习(Transfer Learning)框架
🔩 模型架构:
BERT预训练语言模型
我们在我们的目标任务(即讽刺检测)上对 HuggingFace Transformers 库 [36] 中的 BERT bert-base-uncased 进行了微调,在顶部添加了一个线性层作为句子分类器,该分类器使用与 [ 相对应的最终隐藏状态CLS] 令牌。
中级任务迁移学习
我们提议从情感分类和情感检测这两个相关的中间任务中探索迁移学习,以了解我们能否进一步提高 BERT 模型在讽刺语检测目标任务上的性能。
-
目标任务
-
中间任务
标准神经网络模型
BiLSTM
使用隐藏维度为 100 的单层 BiLSTM [40] 来获取每个 token 的特征,然后对特征进行均值池化,然后是全连接层和 softmax。
我们注意到,我们的数据集之前的工作中通常使用 CNN。当之前的工作中不可用时,我们使用了[41]中的超参数设置。
CNN
我们注意到,我们的数据集之前的工作中通常使用 CNN。当之前的工作中不可用时,我们使用了[41]中的超参数设置。
🧪 实验:
📇 数据集:
数据集来自互联网争论语料库 (IAC) [11]、Reddit [18] 和 Twitter [7]。
EmoNet
EmoNet [38] 是一个 Twitter 数据集,由使用 Plutchik-24 情感集的远程监督自动注释的推文组成。
Sarcasm V2 Corpus.
对于我们的方法,我们将 Gen 数据集随机分为 90% 的训练集和 10% 的测试集。然后,我们将临时训练集分为 80% 训练集和 20% 验证集。
五折交叉验证
Reddit Corpus (SARC)
将原始训练集分为 80% 训练和 20% 验证。
SARCTwitter
我们决定将数据集随机分割五次,保持讽刺和非讽刺推文之间的比例不变(与原始集中相同)。
我们将最初的 994 条推文分为 90% 的训练集和 10% 的测试集。然后,我们再次将获得的训练集分为 80% 训练和 20% 验证,始终保持标签之间的比例不变(见表 9)
📏 评估指标:
📉 优化器&超参数:
批量大小16
AdaGrad 优化器 [44],将梯度裁剪阈值设置为 5.0。
一旦验证集上的平均 F1 在一些连续的 epoch 后停止增长(耐心设置为 5),训练就会停止(对于目标任务和中间任务)
💻 实验设备:
我们使用 AllenNLP 库 [42] 和 HuggingFace Transformers 库 [36] 来实现我们的模型。
们在 PyTorch 环境中使用 AWS 平台、EC2 实例(Ubuntu 深度学习 AMI)和一个 GPU。
📊 消融实验:
📋 实验结果:
Sarcasm V2 Corpus.
表 10 中的结果表明,我们所有的实验都优于 Sarcasm V2 语料库的现有最新技术。
除 TransferEmoNet 之外的传输模型都达到了类似的结果。
Reddit Corpus (SARC)
该表分为两部分:第一部分包含在不使用任何附加信息的情况下对句子本身进行的所有实验,而第二部分包含利用作者的个性特征的模型的性能评论。
我们可以注意到,在表的第一部分中,我们所有的模型都比所有其他先前的工作表现至少 10%,证实了通过预先训练的语言模型用于讽刺预测任务捕获语义的功效。
然而,来自 EmoNet 的情感信息略微提高了简单 BERT 分类的效率,使我们的 TransferEmoNetSent 模型成为 SARC 数据集上新的最先进的性能。
SARCTwitter
我们所有的模型都比之前最先进的模型至少高出 5%。
这些结果证实了之前实验的模式,证明了讽刺和情绪之间的相关性,并且还表明极化的情绪信息可以帮助主要/目标任务从情绪电荷更明确的数据集中进行转移,例如注释的 EmoNet使用词汇表面模式进行远程监督[38]。
🚩 研究结论:
我们展示了讽刺性言论本身是如何自动识别并具有良好的性能,甚至无需进一步使用上下文信息。
我们还探索了一种迁移学习框架,以利用讽刺与文本中传达的情绪或情感之间的相关性,并发现对相关任务进行中间任务训练可以提高基本 BERT 模型的有效性。
我们在三个数据集上建立了新的最先进的讽刺检测结果。具体来说,与之前的讽刺检测工作相比,基于 BERT 的模型(有或没有中间任务迁移学习)的性能提升非常显着,高达 11.53%。
我们发现,仅使用消息内容的 BERT 模型比利用作者历史中附加信息(在之前的工作中编码为个性特征)的模型表现更好。我们发现这个结果非常显着。
此外,如果目标任务(讽刺检测)的数据集大小很小,那么中间任务迁移学习(以情感作为中间任务)可以进一步提高性能。
📝 总结
💡 创新点:
依靠讽刺与(隐含的负面)情绪和情感之间的相关性,我们探索了一种迁移学习框架,该框架使用情感分类和情感检测作为单独的中间任务,将知识注入讽刺检测的目标任务中。
我们基于 BERT 预训练语言模型为此任务建立了强大的基线。我们的分析基于对三个不同大小(从小数据集到大数据集)的讽刺数据集进行的实验结果。
受现有讽刺研究 [6] 的启发,我们使用不同的中间任务(从一般推文中进行细粒度的情绪检测,通过将上述数据集中的情绪极化为积极和消极情绪来进行粗粒度的情绪极性,以及电影评论的情绪分类)。
对于我们的方法,我们将 Gen 数据集随机分为 90% 的训练集和 10% 的测试集。然后,我们将临时训练集分为 80% 训练集和 20% 验证集。
⚠ 局限性:
🔧 改进方法:
🖍️ 知识补充:
BERT 预训练语言模型 [16] 突破了许多自然语言理解任务的性能界限。
TransferEmoNet 的较低性能可以通过 IAC 中稀缺的情感分布来解释。
事实上,讽刺V2的评论主要是对辩论的回应,其中恐惧和期待等情绪很少见。
像 Reddit 这样的中间任务的社交平台在内容、表现力和话题上都有很大的不同。例如,SARC 评论的长度可以从 3/4 个单词到数百个单词不等,而 IMDB 电影评论通常更长,由多个句子组成,而 EmoNet 推文通常仅由一两个句子组成。此外,在 EmoNet 上,情绪模式更加明显,因为人们更倾向于在 Twitter 上描述自己的情绪状态。
在 SARC 中,可能也是因为所涵盖的主题(例如政治、电子游戏),情感模式更加隐晦且难以察觉。
此外,如果目标任务(讽刺检测)的数据集大小很小,那么中间任务迁移学习(以情感作为中间任务)可以进一步提高性能。
💬 讨论:
相关文章:
Sarcasm detection论文解析 |使用 BERT 进行中间任务迁移学习的刺检测
论文地址 论文地址:https://www.mdpi.com/2227-7390/10/5/844#/ github:edosavini/TransferBertSarcasm (github.com) 论文首页 笔记框架 使用 BERT 进行中间任务迁移学习的讽刺检测 📅出版年份:2022 📖出版期刊:Mathematics &…...
docker系列9:容器卷挂载(下)
传送门 docker系列1:docker安装 docker系列2:阿里云镜像加速器 docker系列3:docker镜像基本命令 docker系列4:docker容器基本命令 docker系列5:docker安装nginx docker系列6:docker安装redis docker系…...
QT ERROR: Unknown module(s) in QT: xlsx怎么办
现象描述 QT编译c代码的时候,报这种QT ERROR: Unknown module(s) in QT: xlsx,应该如何解决? 这里,我简单记录一下自己的解决问题过程。有可能,对遇到同样的问题的你,也有所帮助 第一步 检查perl是否安装…...
npm install 卡在reify:rxjs: timing reifyNode的解决办法
今天要逆向跑一个electron,但是npm install一直卡在 reify:element-plus: timing reifyNode:node_modules/lodash Completed in 6664ms这里一动不动,一番研究之后发现可能跟用的镜像有关系,我原本是官方镜像,总感觉第三方镜像有一…...
VScode 无法连接云服务器
试了很多方法,比如更换VScode版本,卸载重装,删除配置文件 重启电脑,都无法成功。最后重置电脑后才连接上,但是重启服务器后又出现该问题。 方法一:修改环境 方法二:把vscode卸载干净重下...
Kafka 面试题(二)
1. 简述Kafka 的工作流程 ? Kafka的工作流程涉及多个关键组件和步骤,确保了消息的可靠传输和处理。以下是Kafka工作流程的简要概述: 生产者发布消息:生产者(Producer)是Kafka工作流程的起点,它…...
Spring Cloud Kubernetes 本地开发环境调试
一、Spring Cloud Kubernetes 本地开发环境调试 上面文章使用 Spring Cloud Kubernetes 在 k8s 环境中实现了服务注册发现、服务动态配置,但是需要放在 k8s 环境中才能正常使用,在本地开发环境中可能没有 k8s 环境,如何本地开发调试呢&#…...
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................. % figure; % subplot(121);…...
设计模式——行为型模式——策略模式(含实际业务使用示例、可拷贝直接运行)
目录 策略模式 定义 组成和UML图 代码示例 实际业务场景下策略模式的使用 策略模式优缺点 使用场景 JDK中使用策略模式示例 参考文档 策略模式 定义 策略模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化…...
Rust:foo(x)、foo(x),还是foo(x.clone())?
一、一个实际问题 用一个线性代数库的求逆矩阵函数时,让我很不爽,我必须按照下面的形式写调用代码: ...if let Some(inv_mat) try_inverse(mat.clone()) {...}...注意 try_inverse 函数的参数传递形式,函数参数是 mat.clone() 而…...
「JavaEE」多线程案例1:单例模式阻塞队列
🎇个人主页:Ice_Sugar_7 🎇所属专栏:JavaEE 🎇欢迎点赞收藏加关注哦! 多线程案例分析 🍉单例模式🍌饿汉模式🍌懒汉模式🍌指令重排序 🍉阻塞队列&a…...
pdf2htmlEX:pdf 转 html,医学指南精细化处理第一步
pdf2htmlEX:pdf 转 html,医学指南精细化处理第一步 单文件转换多文件转换 代码:https://github.com/coolwanglu/pdf2htmlEX 拉取pdf2htmlEX 的 Docker: docker pull bwits/pdf2htmlex # 拉取 bwits/pdf2htmlex不用进入容器&…...
【webrtc】MessageHandler 6: 基于线程的消息处理:StunRequest实现包发送和超时重传
G:\CDN\rtcCli\m98\src\p2p\base\stun_request.cc使用OnMessage 实现包的发送和包的超时重传StunRequest 一个StunRequest 代表是一个独立的请求的发送STUN消息 要不是发送前构造好的,要不就是按照需要构建的使用StunRequestManager: 每一个STUNRequest 携带一个交互id 写入m…...
《Python编程从入门到实践》day22
# 昨日知识点回顾 方法重构、驾驶飞船左右移动、全屏显示 飞船不移动解决,问题出在移动变量x更新 # Ship.pysnipdef update(self):"""根据移动标志调整飞船的位置"""# 更新飞船而不是rect对象的x值# 如果飞船右移的标志和飞船外接…...
介绍 ffmpeg.dll 文件以及ffmpeg.dll丢失怎么办的五种修复方法
ffmpeg.dll 是一个动态链接库文件,属于 FFmpeg运行库。它在计算机上扮演着非常重要的角色,因为它提供了许多应用程序和操作系统所需的功能和组件。当 ffmpeg.dll 文件丢失或损坏时,可能会导致程序无法正常运行,甚至系统崩溃。下面…...
AI换脸原理(6)——人脸分割介绍
一、介绍 人脸分割是计算机视觉和图像处理领域的一项重要任务,它主要涉及到将图像中的人脸区域从背景或其他非人脸区域中分离出来。这一技术具有广泛的应用场景,如人脸识别、图像编辑、虚拟背景替换等。 在计算机视觉(CV)领域,经典的分割技术可以主要划分为三类:语义分…...
【C++并发编程】(二)线程的创建、分离和连接
文章目录 (二)线程的创建、分离和链接创建线程:示例线程的分离(detach)和连接(join) (二)线程的创建、分离和链接 创建线程:示例 线程(Thread&a…...
利用生成式AI重新构想ITSM的未来
对注入 AI 的生成式 ITSM 的需求,在 2023 年 Gartner AI 炒作周期中,生成式 AI 达到预期值达到顶峰后,三分之二的企业已经将生成式 AI 集成到其流程中。 你问为什么这种追求?在预定义算法的驱动下,IT 服务交付和管理中…...
完美解决AttributeError: module ‘backend_interagg‘ has no attribute ‘FigureCanvas‘
遇到这种错误通常是因为matplotlib的后端配置问题。在某些环境中,尤其是在某些特定的IDE或Jupyter Notebook环境中,可能会因为后端配置不正确而导致错误。错误信息提示 module backend_interagg has no attribute FigureCanvas 意味着当前matplotlib的后…...
CMakeLists.txt语法规则:条件判断中表达式说明一
一. 简介 前面学习了 CMakeLists.txt语法中的 部分常用命令,常量变量,双引号的使用。 前面一篇文章也简单了解了 CMakeLists.txt语法中的条件判断,文章如下: CMakeLists.txt语法规则:条件判断说明一-CSDN博客 本文…...
《QT实用小工具·五十三》会跑走的按钮
1、概述 源码放在文章末尾 该项目实现了会逃跑的按钮: 两个按钮,一个为普通按钮,另一个为会跑走的按钮 鼠标移到上面时,立刻跑掉 针对鼠标、键盘、触屏进行优化 随机交换两个按钮的文字、偶尔钻到另一个按钮下面、鼠标移开自…...
Servlet的几种用法?
serlet 1.定义:Serlet是使用Java编写的运行在服务器端的程序 2.Servlet主要是用于处理浏览器端发送的Http请求,并返回一个响应 3.Servlet开发需要使用到的包: java.servlet java.servlet.http 一.Servlet注册 1.xml方式 <servlet>…...
Golang | Leetcode Golang题解之第69题x的平方根
题目: 题解: func mySqrt(x int) int {if x 0 {return 0}C, x0 : float64(x), float64(x)for {xi : 0.5 * (x0 C/x0)if math.Abs(x0 - xi) < 1e-7 {break}x0 xi}return int(x0) }...
AR人脸美妆SDK解决方案,让妆容更加贴合个人风格
美妆行业正迎来前所未有的变革,为满足企业对高效、精准、创新的美妆技术需求,美摄科技倾力打造了一款企业级AR人脸美妆SDK解决方案,为企业打开美妆领域的新世界大门。 革命性的人脸美妆技术 美摄科技的AR人脸美妆SDK解决方案,不…...
Python-100-Days: Day09 Object-oriented programming(OOP) Upgrade
1.property装饰器 之前有讨论过, Python中属性和方法访问权限的问题,不建议将属性设置为私有的,倘若直接将属性暴露给外界也是存在问题的。例如,我们没有办法检查赋给属性的值是否有效。之前的建议是将属性命名以单下划线开头&am…...
虹科Pico汽车示波器 | 免拆诊断案例 | 2010款凯迪拉克SRX车发动机无法起动
故障现象 一辆2010款凯迪拉克SRX车,搭载LF1发动机,累计行驶里程约为14.3万km。该车因正时链条断裂导致气门顶弯,大修发动机后试车,起动机运转有力,但发动机没有着机迹象;多起动几次,火花塞会变…...
ECC 号码总结
1、问题背景 在手机开发过程中,经常遇见各种紧急号码问题,在此特意总结下紧急号码相关知识。 2、紧急号码来源 在MTK RILD EccNumberSource.h中,定义了如下几种紧急号码来源。 按优先级排序介绍如下 2.1、SOURCE_NETWORK 网络下发ÿ…...
《大疆二次开发》EMQX和MQTT部署
EMQX 服务器 基础知识 概念 EMQX (Erlang/Enterprise/Elastic MQTT Broker) ;EMQ/EMQX就是MQTT Broker的一种实现;一款开源的大规模分布式 MQTT 消息服务器,功能丰富,专为物联网和实时通信应用而设计;支持多种协议&…...
【网络】滑动窗口和拥塞窗口
滑动窗口和拥塞窗口是TCP协议中两个重要的窗口概念,它们分别用于流量控制和拥塞控制,在功能和作用上有所不同。 滑动窗口(Sliding Window) 滑动窗口是用于流量控制的机制,它定义了发送方和接收方之间的数据传输量。T…...
数据库知识初步汇总
创建标签表格: CREATE TABLE IF NOT EXISTS labels (标签ID INTEGER PRIMARY KEY,标签名称 TEXT );创建文本与标签的关联表格: CREATE TABLE IF NOT EXISTS 文本标签 (文本ID INTEGER,标签ID INTEGER,FOREIGN KEY (文本ID) REFERENCES texts(编号),FOR…...
汕头e京网/温州seo网站建设
本文实例讲述了Python操作mysql数据库实现增删查改功能的方法。分享给大家供大家参考,具体如下:#codingutf-8import MySQLdbclass Mysql_Oper:def __init__(self,host,user,passwd,db):self.hosthostself.useruserself.passwdpasswdself.databasedbdef d…...
手机网站自助建设/网站建设有多少公司
oracle分类排序/排行可以通过聚合函数rank() 和 dense_rank() 来实现。 rank() 和 dense_rank() : --两种排名方式(分区和不分区):使用和不使用partition --两种计算方式(连续,不连续),对应函数:dense_rank,rank dense_rank与ran…...
什么网站可以做任务领赏金/做网站优化推广
.clearfix,.cf{zoom:1;}.clearfix:after,.cf:after{content:".";display:block;height:0;clear:both;visibility:hidden;} clearfix,一直认为他是用来清除子元素浮动的,但今天却碰到了一个意想不到的问题,他影响到了该DOM兄弟节点的…...
企业做网站 里面都写什么/怎么做表格
目录 漏洞背景 漏洞影响版本 漏洞复现 漏洞利用 漏洞修复 漏洞背景 2020年09月08日微软发布漏洞通告:CVE-2020-16875 | Microsoft Exchange Server 远程执行代码漏洞 由于对cmdlet参数的验证不正确,Microsoft Exchange服务器中存在一个远程执行代码漏洞…...
建设网站是否等于开展网络营销/青岛seo排名收费
wc功能是实现一个文件的行数单词数和字符数的统计,这个项目的实现平台是window,我所用的IDE是VS2013,我首先从在百度搜了相关的一些代码,然后自己模仿着写了一个,基本实现了行数,单词数和字符数的统计。转载于:https:/…...
上海2023年建管平台放假时间/湖南seo优化
整理了一些常用的SuSE Linux Gnome桌面快捷键,希望对大家有用!快捷键ctrlshiftf (窗口全屏)ctrlshiftn (新建konsole窗口)ctrlshift (调整窗口字体大)ctrlshift- (调整窗口字体小)ctrlshift0 (调整窗口字体正常)ctrlaltf1 (终端1)ctrlaltf2 (终端2)ctrla…...