当前位置: 首页 > news >正文

【码银送书第十九期】《图算法:行业应用与实践》

图片

  • 作者:嬴图团队

01 前言

在当今工业领域,图思维方式与图数据技术的应用日益广泛,成为图数据探索、挖掘与应用的坚实基础。本文旨在分享嬴图团队在算法实践应用中的宝贵经验与深刻思考,不仅促进业界爱好者之间的交流,更期望从技术层面为企业在图数据库选型时提供新的视角与思路。

02 K邻算法的实践意义

K邻算法(K-Hop Neighbor),即K跳邻居算法,是一种基于广度优先搜索(BFS)[1] 的遍历策略,用于探索起始节点周围的邻域。该算法在关系发现、影响力预测、好友推荐等预测类场景中得到了广泛应用。

图片

图1 在图数据库中基于广度优先遍历的K邻查询

在图论中,沿着一条边移动被视为一跳(hop)。在遍历图中的顶点时,我们需要考虑多跳问题。图论起源于数学家欧拉在1836年提出的哥尼斯堡七桥问题,它奠定了图计算的数学基础。自20世纪80年代以来,图计算技术迅速发展,成为现代计算领域的重要组成部分。

在现实世界中,危机的传播正是K邻搜索的一个典型应用。以发生危机的实体为起点,顺着或逆着(取决于边的具体定义)边的方向进行1步、2步、3步乃至更深层次的查询,得到的就是先后会被危机波及到的实体。

03 创新应用与案例分析

以某知名房地产企业HD的供应链图谱为例,我们可以通过持股方向、资金流向等信息,清晰直观地揭示危机的传播路径和传递对象。

图片

图2 HD系“交叉性风险”传导全景图

以HD为例,危机发生后,风险传播路径如下:

  • 第一层:影响HD的关联公司;

  • 第二层:影响公司员工和供应商;

  • 第三层:影响购房者(供应商停止供货、工人停工,可能导致HD的在建工程停滞)。

  • ……

风险从HD集团开始,逐步扩散至关联公司、员工、供应商、购房者等,形成了一张复杂的“网络”,呈现出明显的“链条效应”。

然而,许多与风险传导相关的实际应用并未采用图计算,而是依赖于手工计算,如银行KYC部门在计算UBO时仍使用Excel表。这种做法的效率和准确率可想而知。这与金融机构IT系统的陈旧和工作方法的落后有直接关系,阻碍了业务的开展,如企业影响力分析。

企业影响力分析不仅涉及持股关系、生产供求关系等传统问题,还应包括与企业相关的所有金融行为和事件,以及与这些行为事件直接或间接相关的事务。分析的视角不应仅限于企业实体,而应扩展至企业发布的产品、债券等。

如图3所示,分析的核心是企业的某个债券,其价格下跌可能直接影响其他债券的价格:

图片

图3 某债券价格下跌影响该公司其他债券的价格

图4则标出了持有该债券的、可能受影响的省内其他企业:

图片

图4 某债券价格下跌影响持有该债券的其他公司

图3和图4展示的是该债券的1步邻居,从这些邻居继续向外探寻就能得到该债券价格下跌后产生的危机传递效应,如图5所示:

图片

图5 某债券价格下跌影响整个债券市场

专家们已越来越认识到,金融风险并不是孤立存在的,不同风险间具有链条效应,任何一只蝴蝶扇动翅膀,都有可能造成跨市场的风险传染——风险的关联性具有相互转化、传递和耦合的特点——图技术与蝴蝶效应在本质上是不谋而合的,即通过深度挖掘不同来源的数据,以网络化分析的方式去洞察。

此外,金融场景是一种基于长链条计算的场景,这就导致技术实现时的规则更为复杂,因为会涉及到各种回溯、归因,而且数据的计算量更大,同时也更注重时效性。只有实现真正的实时、全面、深度穿透、逐笔追溯、精准计量的监测和预警,才能保障金融风控中不会出现“蝴蝶效应”式的风险发生。

值得注意的是,图往往包含着复杂的属性及定义,例如:边的有向、无向,边的属性权重,K 邻是否包含 K-1 邻,如何处理计算环路等等,这些问题会导致 K 邻算法具体实现的差异。此外,在一些实际场景中,图自身拓扑结构的变化,过滤条件的设定,节点、边属性的变化都会影响到 K 邻计算的结果。

在行业应用中,K邻算法通常应用于多模态的异构图,即将多个单一信息的图融合在一起形成的综合性图谱。这对算法实现者的数据收集和构图能力提出了高要求,同时也对K邻算法的灵活性和功能性提出了更高标准。嬴图的高密度并发图算法库是目前全球运行最快、最丰富的图算法集合,支持通过EXTA接口进行热插拔和扩展。

如果在公开资料中看到K邻算法的应用多是同构图(只有一种点、一种边),可能是因为作者想通过简单的例子阐明观点,或者因为构图能力不足限制了算法的应用,也可能是K邻算法的实现不尽人意,无法对异构图进行恰当处理。K邻算法的应用应该是广泛且实际的,能够解决现实问题的,如果是因为后面两种情况而限制了算法的“大展宏图”,那么相关图厂商就应该反思一二并提高自身了!

最后,一个优秀的算法设计不仅应具备解决问题的能力,还应关注计算效率,即算力。我们列举了一些高性能图计算系统应具备的核心能力,以供企业在评估市场上各种图计算产品时作为参考:

  • 高速图搜索能力:高QPS/TPS、低延时,实时动态剪枝能力;

  • 对任何规模图的深度、实时搜索与遍历能力(10层以上);

  • 高密度、高并发图计算引擎:极高的吞吐率;

  • 成熟稳定的图数据库、图计算与存储引擎、图中台等;

  • 可扩展的计算能力:支持垂直与水平可扩展;

  • 3D+2D高维可视化、高性能的知识图谱Web前端系统;

  • 便捷、低成本的二次开发能力(图查询语言、API/SDK、工具箱等)。

K邻算法:在风险传导中的创新应用与实践价值

本文摘编自《图算法:行业应用与实践》,经出版方授权发布。

图片

延伸阅读《图算法:行业应用与实践》

推荐语:这是一本全面讲解当下主流图算法原理与工程实践的著作,旨在帮助读者在分析和处理各种复杂的数据关系时能更好地得其法、善其事、尽其能。本书概念清晰、内容丰富、实用性强、语言流畅,深入浅出、重点突出,既适合入门读者阅读,又适合有一定图数据库基础的进阶人员阅读。

送书规则:

  • 数量:一到二本(依据阅读量而定)
  • 活动时间:截止到2024-05-16
  • 参与方式:关注博主,点赞评论“人生苦短,我爱学习!!!”

相关文章:

【码银送书第十九期】《图算法:行业应用与实践》

作者:嬴图团队 01 前言 在当今工业领域,图思维方式与图数据技术的应用日益广泛,成为图数据探索、挖掘与应用的坚实基础。本文旨在分享嬴图团队在算法实践应用中的宝贵经验与深刻思考,不仅促进业界爱好者之间的交流,…...

无监督式学习

1.是什么? 无监督式学习与监督式学习**最大的区别就是:**没有事先给定的训练实例,它是自动对输入的示例进行分类或者分群; 优点:不需要标签数据,极大程度上扩大了我们的数据样本,其次不受监督信…...

docker 安装镜像及使用命令

目录 1. Mysql2. Redis3. Nginx4. Elasticsearch官网指导 docker pull 容器名:版本号 拉取容器, 不指定版本号默认最新的 run 运行 -d 后台运行 -p 3306:3306 -p是port 对外端口:对内端口 –name xyy_mysql 容器名称 -e MYSQL_ROOT_PASSWORD123456 环境变量 -v 系统地址:docker…...

Python运维之多进程!!

本节的快速导航目录如下喔!!! 一、创建进程的类Process 二、进程并发控制之Semaphore 三、进程同步之Lock 四、进程同步之Event 五、进程优先队列Queue 六、多进程之进程池Pool 七、多进程之数据交换Pipe 一、创建进程的类Process mu…...

Redis(无中心化集群搭建)

文章目录 1.无中心化集群1.基本介绍2.集群说明 2.基本环境搭建1.部署规划(6台服务器)2.首先删除上次的rdb和aof文件(对之前的三台服务器都操作)1.首先分别登录命令行,关闭redis2.清除/root/下的rdb和aof文件3.把上次的…...

基于springboot+jsp+Mysql的商务安全邮箱邮件收发

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...

三.Django--ORM(操作数据库)

目录 1 什么是ORM 1.1 ORM优势 1.2ORM 劣势 1.3 ORM与数据库的关系 2 ORM 2.1 作用 2.2 连接数据库 2.3 表操作--设置字段 2.4 数据库的迁移 写路由增删改查操作 项目里的urls.py: app里的views.py: 注意点: 1 什么是ORM ORM中文---对象-关系映射 在MTV,MVC设计…...

【华为】AC直连二层组网隧道转发实验配置

【华为】AC直连二层组网隧道转发实验配置 实验需求拓扑配置AC数据规划表 AC的配置顺序AC1基本配置(二层通信)AP上线VAP组关联--WLAN业务流量 LSW1AR1STA获取AP的业务流量 配置文档 实验需求 AC组网方式:直连二层组网。 业务数据转发方式:隧道转发。 DHC…...

第 129 场 LeetCode 双周赛题解

A 构造相同颜色的正方形 枚举&#xff1a;枚举每个 3 3 3\times 3 33的矩阵&#xff0c;判断是否满足条件 class Solution {public:bool canMakeSquare(vector<vector<char>>& grid) {for (int i 0; i < 2; i)for (int j 0; j < 2; j) {int c1 0, c…...

GStreamer日志调试笔记

1、查询所有分类 #gst-launch-1.0 --gst-debug-help 2、查询videotestsrc的日志 #gst-launch-1.0 --gst-debug-help | findstr videotestsrc 结果&#xff1a; 3、使用--gst-debug设置相应日志类型的相应等级&#xff0c;越大显示日志越多&#xff0c;排查内存泄露可以设置为9 …...

【api接口开通教程】YouTube Data API v3申请流程

一、背景调查 1.1 API接口介绍 采集youtube数据&#xff0c;大体分为两种方案&#xff1a;一种是基于爬虫&#xff0c;一种是基于API接口。 说人话就是&#xff1a;爬虫相当于走后门、爬窗户&#xff08;利用技术手段窃取&#xff0c;人家没说给&#xff0c;但我硬拿&#x…...

.net 6.0 框架集成ef实战,步骤详解

一、代码框架搭建 搭建如下代码架构&#xff1a; 重点含EntityFrameworkCore工程&#xff0c;该工程中包含AppDbContext.cs和数据表实体AggregateObject 1、AppDbContext 代码案例 //AppDbContext 代码案例using Microsoft.EntityFrameworkCore;namespace EntityFrameworkCo…...

[C/C++] -- 观察者模式

观察者模式是一种行为型设计模式&#xff0c;用于定义对象间的一种一对多的依赖关系&#xff0c;使得当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都会得到通知并自动更新。 观察者模式涉及以下几个角色&#xff1a; 主题&#xff08;Subject&#xff09;&…...

秋招算法刷题8

20240422 2.两数相加 时间复杂度O&#xff08;max(m,n))&#xff0c;空间复杂度O&#xff08;1&#xff09; public ListNode addTwoNumbers(ListNode l1, ListNode l2) {ListNode headnull,tailnull;int carry0;while(l1!null||l2!null){int n1l1!null?l1.val:0;int n2l2!…...

Docker使用方法

Docker是一种容器化平台&#xff0c;它可以帮助开发人员将应用程序和其依赖项打包成一个独立的、可移植的容器&#xff0c;以便在不同的环境中运行。 以下是使用Docker的基本步骤&#xff1a; 安装Docker&#xff1a;首先&#xff0c;您需要在您的机器上安装Docker。您可以从D…...

HTML学习|网页基本信息、网页基本标签、图像标签、超链接标签、列表标签、表格标签、媒体元素、页面结构分析、iframe内联框架

网页基本信息 DOCTYPE是设置使用什么规范&#xff0c;网页整个信息都在html标签中&#xff0c;head标签里包含字符集设置&#xff0c;网页介绍等信息&#xff0c;title标签是网页的名称&#xff0c;网页的主干都在body标签中 网页基本标签 标题标签 h1~h6都是标题标签&#x…...

001 websocket(评论功能demo)(消息推送)

文章目录 ReviewController.javaWebSocketConfig.javaWebSocketProcess.javaServletInitializer.javaWebsocketApplication.javareadmeindex.htmlapplication.yamlpom.xml ReviewController.java package com.example.controller;import com.example.websocket.WebSocketProces…...

二分查找向下取整导致的死循环69. x 的平方根

二分查找向下取整导致的死循环 考虑伪题目&#xff1a;从数组arr中查找出目标元素target对应的下标&#xff0c;如果数组中不存在目标元素&#xff0c;找 到第一个元素值小于target的元素的下标。 编写二分查找算法如下&#xff1a; Testvoid testBinarySearch(){int[] arr n…...

Kivy 异步任务

如果要进行一些非常耗时的操作(例如&#xff1a;爬虫等)&#xff0c;那么页面就会在这里卡住&#xff0c;而系统就会以为这个软件无响应&#xff0c;并提示关闭&#xff0c;可以说明用户体验极差&#xff0c;因此我们在此处引入异步操作。 在py中引入事件调节器&#xff0c;并在…...

DEV--C++小游戏(吃星星(0.1))

目录 吃星星&#xff08;0.1&#xff09; 简介 头文件 命名空间变量 副函数 清屏函数 打印地图函数 移动函数 主函数 0.1版完整代码 吃星星&#xff08;0.1&#xff09; 注&#xff1a;版本<1为未实现或只实现部分 简介 用wasd去吃‘*’ 头文件 #include<bi…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...