插值多项式的龙格现象的介绍与模拟
在文章拉格朗日插值多项式的原理介绍及其应用中,笔者介绍了如何使用拉格朗日插值多项式来拟合任意数据点集。
事实上,插值多项式会更倾向于某些形状。德国数学家卡尔·龙格Carl Runge发现,插值多项式在差值区间的端点附近会发生扭动,且波动较大。这就是数值分析中著名的龙格现象(Runge Phenomenon)。
本文以函数f(x)=11+12x2f(x)=\frac{1}{1+12x^{2}}f(x)=1+12x21和区间[-1,1]为例,在该区间上平均取n个点(包括端点),在函数图像上得到n个样本点,对这些样本点使用拉格朗日插值多项式,并绘制该插值多项式的图像,观察其在端点附近的表现。
Python实现程序如下:
# -*- coding: utf-8 -*-
# @Time : 2023/3/8 18:55
# @Author : Jclian91
# @File : runge_phenomenon.py
# @Place : Xuhui, Shanghai
import matplotlib.pyplot as plt# sample function
# 函数f(x)=1/(1+12*x**2)
def sample_func(x):return 1 / (1 + 12 * x ** 2)# get sample points from sample function with interval [-1, 1]
def get_sample_points(n):# n: number of sample pointsstep = 2 / (n-1)x_values = [-1 + i * step for i in range(n)]y_values = [sample_func(x) for x in x_values]return x_values, y_values# get basic lagrange polynomial unit
def get_lagrange_polynomial_unit(x_values, k, x):# x_values: values of x in list x_values# k: kth lagrange polynomial unit# x: variable in kth lagrange polynomial unitpoly_unit = 1for i in range(len(x_values)):if i != k:poly_unit *= (x-x_values[i])/(x_values[k]-x_values[i])return poly_unit# get lagrange polynomial
def get_lagrange_polynomial(x_values, y_values, x):poly = 0for i, y in enumerate(y_values):poly += y * get_lagrange_polynomial_unit(x_values, i, x)return poly# plot curves with matplotlib
def plot_function(n):# plot lagrange polynomial with n sample points from sample functionsample_x_values, sample_y_values = get_sample_points(n)sample_points_number = 500x_list = [-1 + i * 2 / (sample_points_number-1) for i in range(sample_points_number)]original_y_list = [sample_func(x) for x in x_list]y_list = [get_lagrange_polynomial(sample_x_values, sample_y_values, x)for x in x_list]plt.plot(x_list, original_y_list, label='f(x)=1/(1+12*x**2)')plt.plot(x_list, y_list, label='lagrange polynomial')plt.title(f'Runge phenomenon with {n} basic points in function f(x)=1/(1+12*x**2)')plt.legend()# plt.show()plt.savefig(f"{n}_basic_points.png")if __name__ == '__main__':n_points = 5plot_function(n_points)
当n=5时,拉格朗日插值多项式的图像如下:

当n=15,拉格朗日插值多项式的图像如下:

当n=25时,拉格朗日插值多项式的图像如下:

当n=35时,拉格朗日插值多项式的图像如下:

当n=45时,拉格朗日插值多项式的图像如下:

通过上述程序的模拟结果,我们可以发现该插值多项式在区间端点附近会发生扭动,当n越大,扭动的幅度就越大,这是用计算机程序对龙格现象的一个模拟。
相关文章:
插值多项式的龙格现象的介绍与模拟
在文章拉格朗日插值多项式的原理介绍及其应用中,笔者介绍了如何使用拉格朗日插值多项式来拟合任意数据点集。 事实上,插值多项式会更倾向于某些形状。德国数学家卡尔龙格Carl Runge发现,插值多项式在差值区间的端点附近会发生扭动&#x…...
Spring整体架构包含哪些组件?
Spring是一个轻量级java开源框架。Spring是为了解决企业应用开发的复杂性而创建的,它使用基本的JavaBean来完成以前只可能由EJB完成的事情。 Spring的用途不仅限于服务器端的开发,从简单性、可测试性和松耦合的角度而言,任何java应用都可以从…...
开发接口需要考虑哪些问题?
1 接口名字 user/ user/adduser/xxx 见名知意,调用接口的开发人员和后来接手的开发人员能够根据接口名称大致猜测出接口作用。 2 协议 设计接口时,应明确调用接口的协议,是采用HTTP协议,HTTPS协议还是FTP协议。比如跨语言调用通常使用WebS…...
关于Activiti7审批工作流绘画流程图(2)
文章目录一、25张表详解二、安装插件一.定制流程提示:以下是本篇文章正文内容,下面案例可供参考 一、25张表详解 虽然表很多,但是仔细观察,我们会发现Activiti 使用到的表都是 ACT_ 开头的。表名的第二部分用两个字母表明表的用…...
String.format()对日期进行格式化
前言:String.format()作为文本处理工具,为我们提供强大而丰富的字符串格式化功能,这里根据查阅的资料做个学习笔记,整理成如下文章,供后续复习查阅。一. format()方法的两种重载形式:format(String format,…...
核酸检测信息管理系统
目录前言一、功能与需求分析二、详细设计与实现1、data包(1)DataDataBase(2)NaPaNamePassword2、operation包(1)操作接口(2)Resident用户功能(3)Simper用户功…...
典型回溯题目 - 全排列(一、二)
典型回溯题目 - 全排列(一、二) 46. 全排列 题目链接:46. 全排列状 题目大意: 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 注意:(1…...
数据清洗和特征选择
数据清洗和特征选择 数据清洗和特征挖掘的工作是在灰色框中框出的部分,即“数据清洗>特征,标注数据生成>模型学习>模型应用”中的前两个步骤。 灰色框中蓝色箭头对应的是离线处理部分。主要工作是 从原始数据,如文本、图像或者应…...
java StringBuilder 和 StringBuffer 万字详解(深度讲解)
StringBuffer类介绍和溯源StringBuffer类常用构造器和常用方法StringBuffer类 VS String类(重要)二者的本质区别(含内存图解)二者的相互转化StringBuilder类介绍和溯源StringBuilder类常用构造器和常用方法String类,St…...
【Linux】帮助文档查看方法
目录1 Linux帮助文档查看方法1.1 man1.2 内建命令(help)1 Linux帮助文档查看方法 1.1 man man 是 Linux 提供的一个手册,包含了绝大部分的命令、函数使用说明。 该手册分成很多章节(section),使用 man 时可以指定不同的章节来浏…...
UEFI 实战(2) HelloWorld 之一 helloworld及.inf文件
初识UEFI 按惯例,首先让我们用HelloWorld跟UEFI打个招呼吧 标准application /*main.c */ #include <Uefi.h> EFI_STATUS UefiMain ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { SystemTable -> ConOut-> OutputString(SystemTab…...
向2022年度商界木兰上榜女性致敬!
目录 信息来源: 2022年度商界木兰名单 简介 评选标准 动态 榜单 为你心中的2023商界女神投上一票 信息来源: 2022年度商界木兰榜公布 华为孟晚舟获商界木兰最高分 - 脉脉 【最具影响力女性】历届商界木兰榜单 中国最具影响力的30位商界女性名单…...
ChatGPT助力校招----面试问题分享(二)
1 ChatGPT每日一题:DC-DC与LDO的区别 问题:介绍一下DC-DC与LDO的区别 ChatGPT:DC-DC和LDO都是电源管理电路,它们的主要作用是将输入电压转换为所需的输出电压,以供电子设备使用。但是,它们之间存在一些重…...
JAVA架构与开发(JAVA架构是需要考虑的几个问题)
在企业中JAVA架构师主要负责企业项目技术架构,企业技术战略制定,技术框架搭建,技术培训和技术攻坚的工作。 在JAVA领域,比较多的都是web项目。用于解决企业的数字化转型。对于JAVA架构师而言,平时对项目的架构主要考虑…...
vue 中 v-for 的使用
v-for 获取列表的前 n 条、中间范围、末尾 n 条的数据 list: [{ img: /static/home/news1.png, title: 标题1 },{ img: /static/home/news2.png, title: 标题2 },{ img: /static/home/news1.png, title: 标题3 },{ img: /static/home/news2.png, title: 标题4 },{ img: /stati…...
项目--基于RTSP协议的简易服务器开发(2)
一、项目创立初衷: 由于之前学过计算机网络的相关知识,了解了计算机网络的基本工作原理,对于主流的协议有一定的了解。但对于应用层的协议还知之甚少,因此我去了解了下目前主要的应用层传输协议,发现RTSP(…...
ubus编译_环境搭建
文章目录一、环境搭建脚本toolChain_jsonc.cmaketoolChain_libubox.cmaketoolChain_ubus.cmakeinstall.sh二、测试出现问题:三、测试uloopmain.c 每5s打印信息一、环境搭建脚本 准备四个文件 install.sh,toolChain_jsonc.cmake,toolChain_libubox.cmake,toolChai…...
移动通信(16)信号检测
常见的信号检测算法一般包括以下几类检测算法:最优、线性和非线性。最优检测算法:最大似然算法线性检测算法:迫零检测算法和最小均方误差检测算法非线性检测算法:串行干扰消除检测算法球形译码检测算法属于一种次优检测算法&#…...
数据结构与算法之《顺序表》
目录 1.什么是顺序表 顺序表的优势和缺点 顺序表预备知识 顺序表的代码实现 顺序表头部插入 顺序表的销毁 顺序表的头删 顺序表的尾删 顺序表的尾插 顺序表的任意位置插入 顺序表的查找 顺序表的打印 1.什么是顺序表 这篇文章我们来讲一下基础数据结构的顺序表&…...
MySQL索引15连问,抗住!
1. 索引是什么?索引是一种能提高数据库查询效率的数据结构。它可以比作一本字典的目录,可以帮你快速找到对应的记录。索引一般存储在磁盘的文件中,它是占用物理空间的。正所谓水能载舟,也能覆舟。适当的索引能提高查询效率&#x…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
