深度学习笔记-2.自动梯度问题
通过反向传播进行自动求梯度
- 1-requires_grad问题
- 2-梯度
- 3- detach() 和 with torch.no_grad()
- 4- Tensor.data.requires_grad
PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播.
1-requires_grad问题
requires_grad=True
开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了),完成计算后,可以调用.backward()来完成所有梯度计算。默认 requires_grad = False
完成计算后,可以调用**.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad**属性中。
#x是直接创建的,所以它没有grad_fn, 而
x = torch.ones(2, 2, requires_grad=True)
print(x)#tensor([[1., 1.],[1., 1.]], requires_grad=True)
print(x.grad_fn)#None#y是通过一个加法操作创建的,所以它有一个为的grad_fn。
y = x + 2
print(y)#tensor([[3., 3.],[3., 3.]], grad_fn=<AddBackward>)
print(y.grad_fn)#<AddBackward object at 0x1100477b8>#打印是否有叶子节点
print(x.is_leaf, y.is_leaf) # True False
若开始没有设置requires_grad 属性可通过 .requires_grad_()来用in-place的方式改requires_grad属性
a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True)
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)#<SumBackward0 object at 0x118f50cc0>
2-梯度
标量:标量就是一个数字。标量也称为0维数组
向量:向量是一组标量组成的列表。向量也称为1维数组。
矩阵:矩阵是由一组向量组成的集合。矩阵也称为2维数组。
张量:张量是矩阵的推广,可以用来描述N维数据
注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor
out.backward() # 等价于 out.backward(torch.tensor(1.)) 反向转播#求导
x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)#tensor([[2., 4.],[6., 8.]], grad_fn=<ViewBackward>)
现在 z 不是一个标量,所以在调用backward时需要传入一个和z同形的权重向量进行加权求和得到一个标量。
v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)
print(x.grad)#tensor([2.0000, 0.2000, 0.0200, 0.0020]) x.grad是和x同形的张量
3- detach() 和 with torch.no_grad()
两种方式中断梯度追踪,无法进行梯度链式法则梯度传播
1-detach()
将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了
2-with torch.no_grad()
将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。
x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2
with torch.no_grad():y2 = x ** 3
y3 = y1 + y2print(x.requires_grad)#true
print(y1, y1.requires_grad) #tensor(1., grad_fn=<PowBackward0>) True
print(y2, y2.requires_grad) # False
print(y3, y3.requires_grad) # tensor(2., grad_fn=<ThAddBackward>)Truey3.backward()#y2被包裹 所以y2有关的梯度是不会回传的 结果只是y1 对x的梯度
print(x.grad)#tensor(2.)#使用y2的传播会报错
#RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
4- Tensor.data.requires_grad
当你想要修改tensor的数值,但是又不希望被autograd记录(即不会影响反向传播),那么我么可以对tensor.data进行操作。
x = torch.ones(1,requires_grad=True)print(x.data) # tensor([1.]) #还是一个tensor
print(x.data.requires_grad) #False #但是已经是独立于计算图之外y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播y.backward()#tensor([100.], requires_grad=True)
print(x) # 更改data的值也会影响tensor的值
print(x.grad)#tensor([2.])
相关文章:
深度学习笔记-2.自动梯度问题
通过反向传播进行自动求梯度1-requires_grad问题2-梯度3- detach() 和 with torch.no_grad()4- Tensor.data.requires_gradPyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播. 1-requires_grad问题 requires_gradTrue …...
一文读懂倒排序索引涉及的核心概念
基础概念相信对于第一次接触Elasticsearch的同学来说,最难理解的概念就是倒排序索引(也叫反向索引),因为这个概念跟我们之前在传统关系型数据库中的索引概念是完全不同的!在这里我就重点给大家介绍一下倒排序索引&…...
Java基础算法题
以创作之名致敬节日 胜固欣然,败亦可喜。 --苏轼 目录 练习1 : 优化代码 扩展 : CRTL Alt M 自动抽取方法 练习2: 方法一: 方法二: 方法三: Math : 顾名思义,Math类就是用来进行数学计算的,它提供了大量的静态方法来便于我们实…...
「SAP ABAP」你真的了解OPEN SQL的DML语句吗 (附超详细案例讲解)
💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后端的开发语言A…...
数据结构3——线性表2:线性表的顺序结构
顺序结构的基本理解 定义: 把逻辑上相邻的数据元素存储在物理上相邻(占用一片连续的存储单元,中间不能空出来)的存储单元的存储结构 存储位置计算: LOC(a(i1))LOC(a(i))lLOC(a(i1))LOC(a(i))l LOC(a(i1))LOC(a(i))l L…...
VMware虚拟机搭建环境通用方法
目录一、前期准备1.下载并安装一个虚拟机软件二、开始创建虚拟机1.配置虚拟机硬件相关操作2.虚拟机网络相关操作三、开机配置相关内容0.开机遇到报错处理(选看--开机没有报错请忽略)1.开始配置2.开机之后配置3.使用xshell远程登录4.使用xshell配置虚拟机…...
2.Fully Convolutional Networks for Semantic Segmentation论文记录
欢迎访问个人网络日志🌹🌹知行空间🌹🌹 文章目录1.基础介绍2.分类网络转换成全卷积分割网络3.转置卷积进行上采样4.特征融合5.一个pytorch源码实现参考资料1.基础介绍 论文:Fully Convolutional Networks for Semantic Segmentati…...
深度解析Spring Boot自动装配原理
废话不多说了,直接来看源码。源码解析SpringBootApplication我们在使用idea创建好Spring Boot项目时,会发现在启动类上添加了SpringBootApplication注解,这个注解就是Spring Boot的核心所在。点击注解可以查看到到它的实现ementType.TYPE) Re…...
Linux:环境变量
目录一、环境变量的理解(1)什么是环境变量?(2)Linux中的环境变量二、环境变量的使用(1)PATH环境变量(2)和变量相关的指令三、环境变量与普通变量的区别在平时使用电脑的时…...
Codeforces Round 703 (Div. 2)(A~D)
A. Shifting Stacks给出一个数组,每次可以将一个位置-1,右侧相邻位置1,判断是否可以经过若干次操作后使得数列严格递增。思路:对于每个位置,前缀和必须都大于该位置应该有的最少数字,即第一个位置最少是0&a…...
Django项目5——基于tensorflow serving部署深度模型——windows版本
1:安装docker for windows 可能需要安装WLS2,用于支持Linux系统,参照上面的教程安装 2:在Powershell下使用docker docker pull tensorflow/serving3:在Powershell下启动tensorflow serving docker run -p 8500:8500 …...
MySQL基础篇3
第一章 多表关系实战 1.1 实战1:省和市 方案1:多张表,一对多 方案2:一张表,自关联一对多 id1 name‘北京’ p_id null; id2 name‘昌平’ p_id1 id3 name‘大兴’ p_id1 id3 name‘上海’ p_idnull id4 name‘浦东’…...
携程 x TiDB丨应对全球业务海量数据增长,一栈式 HTAP 实现架构革新
随着新冠病毒疫情的缓解和控制,全球旅游业逐渐开始重新复苏。尤其在一些度假胜地,游客数量已经恢复到疫情前的水平。 携程作为全球领先的一站式旅行平台,旗下拥有携程旅行网、去哪儿网、Skyscanner 等品牌。携程旅行网向超过 9000 万会员提供…...
记一次Kafka warning排查过程
1、前因 在配合测试某个需求的时候,正好看到控制台打印了个报错,如下: 2023-03-06 17:05:58,565[325651ms][pool-28-thread-1][org.apache.kafka.common.utils.AppInfoParser][WARN] - Error registering AppInfo mbean javax.management.I…...
MySQL学习笔记(6.视图)
1. 视图作用 (1). 简化业务,将多个复杂条件,改为视图 (2). mysql对用户授权,只能控制表权限,通过视图可以控制用户字段权限。 (3). 可以避免基本表变更,影响业务。只需更改视图即可。 2. 视图(创建&…...
java多线程与线程池-01多线程知识复习
多线程知识复习 文章目录 多线程知识复习第1章 多线程基础1.1.2 线程与进程的关系1.2 多线程启动1.2.1 线程标识1.2.2 Thread与Runnable1.2.3 run()与start()1.2.4 Thread源码分析1.3 线程状态1.3.1 NEW状态1.3.2 RUNNABLE状态1.3.3 BLOCKED状态1.3.4 WAITING状态1…...
Typescript - 将命名空间A导入另一个命名空间B作为B的子命名空间,并全局暴露命名空间B
前言 最近相统一管理 ts 中的类型声明,这就需要将各模块下的命名空间整合到全局的命名空间下,牵涉到从别的文件中引入命名空间并作为子命名空间在全局命名空间中统一暴露。 将命名空间A导入另一个命名空间B作为B的子命名空间 文件说明 assets.ts 文件中…...
Windows下实现Linux内核的Python开发(WSL2+Conda+Pycharm)
许多软件可以通过Python交互,但没有开发Windows版本,这个时候装双系统或虚拟机都很不方便,可以采取WSL2CondaPycharm的策略来进行基于Linux内核的Python开发。启动WSL2,安装Linux内核教程:旧版 WSL 的手动安装步骤 | M…...
新闻发布网站分析及适用场景
在当今数字时代,发布新闻的渠道已经不再局限于传统媒体,越来越多的企业、组织和个人开始使用互联网平台发布新闻稿,以提升品牌知名度和影响力。本文将介绍一些可以发布新闻的网站,并分析其特点和适用场景。一、新闻稿发布平台1.新…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
