当前位置: 首页 > news >正文

使用python求PLS-DA的方差贡献率

以鸢尾花数据集为例,实现PLS-DA降维,画出降维后数据的散点图并求其方差贡献率。

效果图

完整代码

# 导入所需库
import numpy as np
from sklearn.cross_decomposition import PLSRegression
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt# 载入数据
iris = load_iris()
X = iris.data
y = iris.target
print(X.shape)
print(y.shape)
# 标准化数据
X = StandardScaler().fit_transform(X)# 定义PLS-DA对象并拟合数据
plsda = PLSRegression(n_components=2)
plsda.fit(X, y)# 得到PLS-DA降维后的数据
X_plsda = plsda.transform(X)
print(X_plsda.shape)
# 绘制散点图
colors = ['blue', 'red', 'green']
labels = ['Setosa', 'Versicolor', 'Virginica']
for i in range(len(colors)):x = X_plsda[:, 0][y == i]y_plot = X_plsda[:, 1][y == i]plt.scatter(x, y_plot, c=colors[i], label=labels[i])# 输出成分贡献率
# 计算PLS-DA成分贡献率# 计算PLSDA的旋转系数
plsda_components = plsda.x_rotations_
print(plsda_components)
plsda_scores = X_plsda
# 计算PLSDA成分解释的方差比例
variance_explained = np.var(plsda_scores, axis=0)   # 计算在PLSDA成分上解释的方差
print("variance_explained shape:", variance_explained.shape)
print("variance_explained:", variance_explained)
total_variance = np.var(X, axis=0)                 # 计算在原始数据上总方差的和
print("total_variance shape:", total_variance.shape)
print("total_variance:", total_variance)
plsda_variance_ratio = variance_explained / total_variance.sum()
print("total_variance.sum():", total_variance.sum())   # 计算PLSDA成分解释的方差比例
# print(plsda_variance_ratio)
# 输出成分贡献率
for i, ratio in enumerate(plsda_variance_ratio):print(f'PLS-DA Component {i + 1}: {ratio * 100:.2f}%')plt.xlabel('LV1 ({} %)'.format(round(plsda_variance_ratio[0] * 100, 2)))
plt.ylabel('LV2 ({} %)'.format(round(plsda_variance_ratio[1] * 100, 2)))plt.legend()
plt.show()

 代码解析

主要解析求成分贡献率的过程:

plsda_components = plsda.x_rotations_
plsda_scores = X_plsda
variance_explained = np.var(plsda_scores, axis=0)
total_variance = np.var(X, axis=0)
plsda_variance_ratio = variance_explained / total_variance.sum()
  1. plsda.x_rotations_plsda是进行PLS-DA的对象,plsda.x_rotations_是PLS-DA模型中X变量(即自变量)的旋转矩阵,表示如何将原始数据X映射到新的降维空间中。将该旋转矩阵存储到变量plsda_components中。对于此数据集,得到的plsda_components是4x2的矩阵。

  2. X_plsda:这是使用PLS-DA降维后的X变量数据集,是150×2的矩阵。

  3. variance_explained = np.var(plsda_scores, axis=0):计算每个主成分(即降维后的新变量)在降维后数据中的方差解释比例,存储到变量variance_explained中。这里使用np.var()函数计算方差。由于本次代码是使用PLS-DA将数据降到2维,故得到的variance_explained是一个包含2个元素的一维数组[2.89312513 0.15504989],表示每个特征的方差之和

  4. total_variance = np.var(X, axis=0):计算原始数据X中每个变量的总方差,存储到变量total_variance中。原始数据是150×4的矩阵,故total_variance是一个包含4个元素的一维数组,[1. 1. 1. 1.]。

  5. plsda_variance_ratio = variance_explained / total_variance.sum():计算每个主成分在总方差中的方差解释比例,即PLS-DA的方差解释比例。将结果存储到变量plsda_variance_ratio中。total_variance.sum()是求总方差的和,即每个变量的方差之和。这里total_variance.sum()等于3.9999999999999987而不是4,是由于浮点数的存储方式,在某些情况下,计算机无法精确表示某些小数。所以此计算步骤为[2.89312513/3.9999999999999987, 0.15504989/3.9999999999999987]得到[0.72328128 0.03876247],也就是每个主成分在总方差中的方差解释比例。

相关文章:

使用python求PLS-DA的方差贡献率

以鸢尾花数据集为例,实现PLS-DA降维,画出降维后数据的散点图并求其方差贡献率。 效果图 完整代码 # 导入所需库 import numpy as np from sklearn.cross_decomposition import PLSRegression from sklearn.datasets import load_iris from sklearn.pre…...

前端面试题--JavaScript篇

一、JavaScript中的数据类型JavaScript中共有八种数据类型:Number、String、Boolean、Object、Null、Undefined、null、Symbol、BigInt 其中Symbol和BigInt是ES6新增的数据类型Symbol代表独一无二且不可改变的数据类型,主要为了解决可能出现的全局变量冲…...

【批处理脚本】-3.5-pause暂停命令详解

"><--点击返回「批处理BAT从入门到精通」总目录--> 共3页精讲(列举了所有pause的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...

软件测试11

一 Linux命令的基本格式 格式组成&#xff1a;命令主体 -命令选项 命令参数 常见命令形式&#xff1a; &#xff08;1&#xff09;命令主体 &#xff08;2&#xff09;命令主体 -命令选项 &#xff08;3&#xff09;命令主体 参数 &#xff08;4&#xff09;命令主体 -命令选项…...

2023 面试题js、es6篇

什么是闭包&#xff1f; 闭包的定义 闭包是指能够访问另一个函数作用域中的变量的一个函数。 在js中&#xff0c;只有函数内部的子函数才能访问局部变量&#xff0c; 所以闭包可以理解成 “定义在一个函数内部的函数”。 应用场景 将内部的函数返到外部去&#xff0c;让外部…...

(六十六)设计索引的时候,我们一般要考虑哪些因素呢?(下)

今天我们最后来讲一下设计索引的时候&#xff0c;我们一般要考虑哪些因素。 另外还讲了字段基数的问题以及前缀索引的问题&#xff0c; 那么今天接着来讲剩下的一些索引设计的原则。 首先假设你设计好了一个索引&#xff0c;非常棒&#xff0c;接着你在SQL里这么写&#xff…...

python程序设计基础 实验四

⭐python实验专栏&#xff0c;欢迎订阅与关注&#xff01; ★观前提示&#xff1a;本篇内容为python程序设计实验&#xff0c;代码内容经测试没有问题&#xff0c;但是可能会不符合每个人实验的要求&#xff0c;因此以下内容建议仅做思路参考。 一、实验目的 &#xff08;1&am…...

ASP.NET CORE API 使用Orleans

快速使用Monimal API 快速集成Orleans 微软官网地址如下&#xff1a;https://learn.microsoft.com/zh-cn/dotnet/orleans/quickstarts/build-your-first-orleans-app?sourcerecommendations&tabsvisual-studio当然它的存储grain存储采用的是内存级别存储&#xff0c;我缓存…...

《论文阅读》软化标签(将one-hot编码转变为grayscale标签)

《论文阅读》The Emotion is Not One-hot Encoding: Learning with Grayscale Label for Emotion Recognition in Conversation 前言简介相关知识grayscale label模型方法CategoryWord-EmbeddingSelfSelf-AdjustFuture-Self损失实验结果前言 你是否也对于理解论文存在困惑? …...

keras图片数字识别入门AI机器学习

通过使用mnist&#xff08;AI界的helloworld&#xff09;手写数字模型训练集&#xff0c;了解下AI工作的基本流程。 本例子&#xff0c;要基于mnist数据集&#xff08;该数据集包含了【0-9】的模型训练数据集和测试数据集&#xff09;来完成一个手写数字识别的小demo。 mnist…...

使用qt编写一个程序,伪造一个ip访问一个网站。

你好&#xff0c;这是Bing。&#x1f60a; 根据网络搜索结果&#xff0c;使用qt编写一个程序&#xff0c;伪造一个ip访问一个网站的方法可能有以下几种&#xff1a; - 使用X-Forwarded-For请求头来伪造客户端的真实ip地址。这种方法需要在发送请求时添加X-Forwarded-For: 伪造…...

探访人工智能领跑者:纷享销客携手30+TOP高科技企业走进旷视科技

拥有全球规模领先的计算机视觉研究院&#xff1b; 揽获28项世界顶级AI竞赛冠军&#xff1b; 世界级人工智能公司&#xff1b; 没错&#xff0c;它就是人工智能行业的务实者和领跑者&#xff0c;旷视科技。 3月3日&#xff0c;北京软件和信息服务业协会联合纷享销客&#xff0c;…...

UTC、TimeZone、TimeStamp

UTC &#xff1a;Universal Time Coordinated&#xff0c;世界协调时&#xff0c;又称世界标准时间。与UTC time对应的是各个时区的local time&#xff0c;东N区的时间比UTC时间早N个小时&#xff0c;因此UTC time N小时 即为东N区的本地时间&#xff1b;而西N区时间比UTC时间…...

探究SMC局部代码加密技术以及在CTF中的运用

前言 近些日子在很多线上比赛中都遇到了smc文件加密技术,比较出名的有Hgame杭电的比赛,于是我准备实现一下这项技术&#xff0c;但是在网上看了很多文章&#xff0c;发现没有讲的特别详细的&#xff0c;或者是无法根据他们的方法进行实现这项技术&#xff0c;因此本篇文章就是…...

免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发人工智能企业

免费集装箱箱号识别API&#xff0c;人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户&#xff0c;支持API集成二次开发。箱信息识别及铅封号识别功能免费&#xff0c;顶尖AI集装箱识别率99.98%&#xff0c;全球No.1集装箱人工智能企业CIMCAI打造。中国上海人工智能…...

pdf多页合并为一页方法总结,你觉得哪个最好?

PDF格式的文件在现代办公中是不可或缺的&#xff0c;许多人在工作中需要频繁处理PDF文档。然而&#xff0c;当我们需要阅读多个PDF文件时&#xff0c;不断切换不同的文件并一个一个地打开查阅会非常麻烦。为了提高阅读效率&#xff0c;人们一般会将pdf多页合并为一页。那么&…...

每日一读【基金/股票投资的常识和纪律】

个人投资的几点总结&#xff0c;我时常拿来阅读&#xff0c;警示自己: &#xff0a;基于常识&#xff0c;独立思考。 &#xff0a;投资以年为单位&#xff0c;5年一周期。 &#xff0a;下跌时的信心比金子还贵&#xff0c;永远要记住&#xff1a;风险是涨上去的&#xff0c;机会…...

阶段二12_面向对象高级_继承3

知识点内容&#xff1a; 抽象类 模板设计模式 final关键字 一.抽象类 (1)抽象类概述 抽象方法&#xff1a;将共性的行为&#xff08;方法&#xff09;抽取到父类之后&#xff0c;发现该方法的实现逻辑 无法在父类中给出具体明确&#xff0c;该方法就可以定义为抽象方法。 抽…...

C++ STL:string类的概述及常用接口说明

目录 一. 什么是STL 二. string类的概述 三. string类的常用接口说明 3.1 字符串对象创建相关接口&#xff08;构造函数&#xff09; 3.2 字符串长度和容量相关接口 3.3 字符访问相关接口函数 3.4 字符串删改相关接口函数 3.5 字符查找和子串相关接口函数 3.6 迭代器相…...

java Math类 和 System类 详解(通俗易懂)

Math类介绍Math类常用方法及演示System类简介System类常用方法及演示一、前言本节内容是我们《API-常用类》专题的第四小节了。本节内容主要讲Math类和System类&#xff0c; 内容包括Math类介绍、Math类常用方法、System类介绍&#xff0c;System类常用方法。该小节内容基本不涉…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

HTTPS证书一年多少钱?

HTTPS证书作为保障网站数据传输安全的重要工具&#xff0c;成为众多网站运营者的必备选择。然而&#xff0c;面对市场上种类繁多的HTTPS证书&#xff0c;其一年费用究竟是多少&#xff0c;又受哪些因素影响呢&#xff1f; 首先&#xff0c;HTTPS证书通常在PinTrust这样的专业平…...

基于Java项目的Karate API测试

Karate 实现了可以只编写Feature 文件进行测试,但是对于熟悉Java语言的开发或是测试人员,可以通过编程方式集成 Karate 丰富的自动化和数据断言功能。 本篇快速介绍在Java Maven项目中编写和运行测试的示例。 创建Maven项目 最简单的创建项目的方式就是创建一个目录,里面…...