【TensorFlow深度学习】LeNet-5卷积神经网络实战分析
LeNet-5卷积神经网络实战分析
- LeNet-5卷积神经网络实战分析:从经典模型到现代实践
- LeNet-5的历史背景
- LeNet-5网络架构
- 实战代码解析
- 实战分析
- 结论
LeNet-5卷积神经网络实战分析:从经典模型到现代实践
在深度学习的历程中,LeNet-5无疑是一座里程碑,它不仅标志着卷积神经网络(CNN)在图像识别任务中的首次成功应用,也为后续的深度学习发展奠定了坚实基础。本文将带您深入LeNet-5的结构与实战实现细节,通过代码解析,展现其在MNIST手写数字识别任务中的应用,揭示其设计理念与实践价值。
LeNet-5的历史背景
1990年代,由Yann LeCun等人提出的LeNet-5,以其简洁的架构和高效的性能,引领了卷积神经网络在商业化应用的潮流,特别是在邮政编码识别和支票处理等任务上大放异彩。这一开创性工作不仅验证了CNN在处理视觉数据方面的潜力,也促进了后来深度学习领域的蓬勃发展。
LeNet-5网络架构
LeNet-5由两个卷积层、两个下采样层(现常采用最大池化层替代)、以及三个全连接层组成。原始输入尺寸为32x32,经过两层卷积和池化后,特征图尺寸逐渐减少,最终通过展平层(Flatten)转换为一维向量,接入全连接层进行分类决策。
实战代码解析
使用TensorFlow 2.0,我们可以便捷地复现并运行LeNet-5模型。以下是关键代码段:
import tensorflow as tf
from tensorflow.keras import Sequential, layers# 定义LeNet-5模型
def create_lenet5():model = Sequential([layers.Conv2D(6, kernel_size=3, strides=1, padding='SAME', activation='relu'), # 卷积层1layers.MaxPooling2D(pool_size=2, strides=2), # 池化层1layers.Conv2D(16, kernel_size=3, strides=1, padding='SAME', activation='relu'), # 卷积层2layers.MaxPooling2D(pool_size=2, strides=2), # 池化层2layers.Flatten(), # 展平层layers.Dense(120, activation='relu'), # 全连接层1layers.Dense(84, activation='relu'), # 全连接层2layers.Dense(10) # 输出层])return model# 创建模型实例
network = create_lenet5()# 构建模型,指定输入形状
network.build(input_shape=(None, 28, 28, 1))# 打印模型摘要
network.summary()# 编译模型
network.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 加载MNIST数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train[..., tf.newaxis].astype('float32')
x_test = x_test[..., tf.newaxis].astype('float32')# 训练模型
history = network.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))# 测试准确率
test_loss, test_acc = network.evaluate(x_test, y_test, verbose=2)
print('\nTest accuracy:', test_acc)
实战分析
-
模型初始化:通过Sequential模型,逐层构建LeNet-5。首先定义两个卷积层,激活函数使用ReLU,以增强非线性表达能力。
-
池化层:原论文中的下采样层被现代化的MaxPooling层替代,有效减少计算量同时保持特征图的显著部分。
-
全连接层:在特征提取之后,通过Flatten层将数据展平,然后通过几个全连接层进行分类决策。
-
数据预处理:将MNIST数据集标准化并扩展维度,适应CNN的输入要求。
-
模型编译与训练:使用Adam优化器和SparseCategoricalCrossentropy损失函数(考虑logits直接计算),进行模型编译。训练5个epochs以快速展示模型性能。
-
性能评估:最后,测试集上的准确率显示模型的泛化能力。
结论
LeNet-5虽结构简单,但其设计理念和应用成效深远,是深度学习历史上不可忽视的篇章。通过现代框架TensorFlow的实现,我们不仅重温了这一经典模型的魅力,也体会到深度学习框架在简化模型构建、训练过程中的强大优势。对于初学者而言,理解LeNet-5不仅是一次技术之旅,更是深度学习思想的启蒙。随着技术进步,虽然现代网络模型更为复杂且功能强大,但LeNet-5作为基石,其历史地位和教学价值依旧不可磨灭。
相关文章:
【TensorFlow深度学习】LeNet-5卷积神经网络实战分析
LeNet-5卷积神经网络实战分析 LeNet-5卷积神经网络实战分析:从经典模型到现代实践LeNet-5的历史背景LeNet-5网络架构实战代码解析实战分析结论 LeNet-5卷积神经网络实战分析:从经典模型到现代实践 在深度学习的历程中,LeNet-5无疑是一座里程…...
错误发生在尝试创建一个基于有限元方法的功能空间时
问题: index cell.index(#直接使用从0开始的索引if0<1ndex<10: #正集流体 subdomains_x[cell,index(] 1 fem1 /usr/bin/python3.8 /home/wy/PycharmProjects/pythonProject2/fem1.pyUnknown ufl object type FiniteElementTraceback (aost recent call last)…...
【八股】Hibernate和JPA:理解它们的关系
在Java开发中,持久化框架是至关重要的工具,它们帮助开发者将Java对象与关系数据库中的数据进行映射和管理。Hibernate和JPA(Java Persistence API)是两个广泛使用的持久化框架。那么,Hibernate和JPA之间到底是什么关系…...
C++类型参数技术以及常见的类型擦除容器
文章目录 一、类型擦除的作用二、常见的类型擦除容器1.std::any2.std::function3.std::shared_ptr\<void\>和 std::unique_ptr\<void\>4.总结 三、实现一个any参考 类型擦除(Type Erasure)是一种编程技术,通过它可以在运行时存储…...
SpringBoot如何缓存方法返回值?
Why? 为什么要对方法的返回值进行缓存呢? 简单来说是为了提升后端程序的性能和提高前端程序的访问速度。减小对db和后端应用程序的压力。 一般而言,缓存的内容都是不经常变化的,或者轻微变化对于前端应用程序是可以容忍的。 否…...
C#的web项目ASP.NET
添加实体类和控制器类 using System; using System.Collections.Generic; using System.Linq; using System.Web;namespace WebApplication1.Models {public class Company{public string companyCode { get; set; }public string companyName { get; set; }public string com…...
Spring MVC 源码分析之 DispatcherServlet#getHandlerAdapter 方法
前言: 前面我们分析了 Spring MVC 的工作流程源码,其核心是 DispatcherServlet#doDispatch 方法,我们前面分析了获取 Handler 的方法 DispatcherServlet#getHandler 方法,本篇我们重点分析一下获取当前请求的适配器 HandlerAdapt…...
假设检验学习笔记
1. 假设检验的基本概念 1.1. 原假设(零假设) 对总体的分布所作的假设用表示,并称为原假设或零假设 在总体分布类型已知的情况下,仅仅涉及总体分布中未知参数的统计假设,称为参数假设 在总体分布类型未知的情况下&#…...
vue3 watch学习
watch的侦听数据源类型 watch的第一个参数为侦听数据源,有4种"数据源": ref(包括计算属性) reactive(响应式对象) getter函数 多个数据源组成的数组。 //ref const xref(0)//单个ref watch(x,(newX)>{console.…...
推荐的Pytest插件
推荐的Pytest插件 Pytest的插件生态系统非常丰富,以下是一些特别推荐的Pytest插件: pytest-sugar 这个插件改进了Pytest的默认输出,添加了进度条,并立即显示失败的测试。它不需要额外配置,只需安装即可享受更漂亮、更…...
C语言 | Leetcode C语言题解之第124题二叉树中的最大路径和
题目: 题解: /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ int max; int dfs(struct TreeNode* root){if(!root) return 0;int left dfs(root->left…...
Linux综合实践(Ubuntu)
目录 一、配置任务 1.1 配置该服务器的软件源为中科大软件源 1.2 安装相关软件openssh-server和vim 1.3 设置双网卡,网卡1为NAT模式,网卡2为桥接模式(桥接模式下,使用静态ip,该网卡数据跟实验室主机网络设置相似,除…...
C++面试题其二
19. STL中unordered_map和map的区别 unordered_map 和 map 都是C标准库中的关联容器,但它们在实现和性能方面有显著区别: 底层实现:map 是基于红黑树实现的有序关联容器,而 unordered_map 是基于哈希表实现的无序关联容器。元素…...
系统架构设计师【第9章】: 软件可靠性基础知识 (核心总结)
文章目录 9.1 软件可靠性基本概念9.1.1 软件可靠性定义9.1.2 软件可靠性的定量描述9.1.3 可靠性目标9.1.4 可靠性测试的意义9.1.5 广义的可靠性测试与狭义的可靠性测试 9.2 软件可靠性建模9.2.1 影响软件可靠性的因素9.2.2 软件可靠性的建模方法9.2.3 软件的可靠性模…...
x264 参考帧管理原理:i_poc_type 变量
x264 参考帧管理 x264 是一个开源的 H.264 视频编码软件,它提供了许多高级特性,包括对参考帧的高效管理。参考帧管理是视频编码中的一个重要部分,它涉及到如何存储、更新和使用已经编码的帧以提高编码效率。 x264 参考帧管理的一些关键点总结如下: 参考帧的初始化和重排序:…...
高级Web Lab2
高级Web Lab2 12 1 按照“Lab 2 基础学习文档”文档完成实验步骤 实验截图: 2 添加了Web3D场景选择按钮,可以选择目标课程或者学习房间。...
Linux网络-使用Tcp协议进行网络通信并通过网络接口实现远端翻译
文章目录 Tcp协议Tcp协议常见API接口1. int socket(int domain, int type, int protocol);2. int bind(int socket, const struct sockaddr *address, socklen_t address_len);struct sockaddr 3. int listen(int socket, int backlog);4. int accept(int socket, struct socka…...
实时数据传输:Django 与 MQTT 的完美结合
文章目录 准备工作创建 Django 项目与应用设置 MQTT 服务器编写 Django 视图编写前端模板发布 MQTT 消息运行 Django 项目 在当今互联网应用中,实时数据传输已经成为许多项目的核心需求。无论是社交媒体平台、在线游戏、金融交易还是物联网设备,都需要及…...
创建Django项目及应用
1 创建Project 1个Project可以对应多个app django-admin startproject myproject 2 创建App python manage.py startapp app01 INSTALLED_APPS [# ...app01,app02,# ... ] 如果要让这个应用在项目中起作用,需要在项目的 settings.py 文件的 INSTALLED_APPS 配置…...
Flutter课程分享 -(系统课程 基础 -> 进阶 -> 实战 仿京东商城)
前言 在移动应用开发的世界中,Flutter 作为一款由 Google 推出的开源 UI 软件开发工具包,正迅速赢得开发者们的青睐。其跨平台、高性能、丰富的组件库以及易于学习的特性,使得 Flutter 成为许多开发者的不二选择。然而,对于初学者…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
