使用C++版本的opencv dnn 部署onnx模型
使用OpenCV的DNN模块在C++中部署ONNX模型涉及几个步骤,包括加载模型、预处理输入数据、进行推理以及处理输出。
构建了yolo类,方便调用
yolo.h 文件
#ifndef YOLO_H
#define YOLO_H
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>struct yoloDetectionResult_detection_thread
{cv::Point2f DetectionResultLocation; // 目标中心点像素位置cv::Point2d DetectionResultClassAndConf; //类型、置信度cv::Rect DetectionResultRect; //目标矩形框cv::Mat DetectionResultIMG; //目标像素unsigned char object_no = -1; //目标序号unsigned char object_mission = -1; //目标任务状态int frame_no; //图像帧号
};
class detect_result
{
public:int classId;float confidence;cv::Rect_<float> box;};class YOLO
{
public:YOLO();~YOLO();void init(std::string onnxpath);void detect(cv::Mat& frame, std::vector<detect_result>& result);void draw_frame(cv::Mat& frame, std::vector<detect_result>& results);private:cv::dnn::Net net;const float confidence_threshold_ = 0.4f;const float nms_threshold_ = 0.4f;const int model_input_width_ = 640;const int model_input_height_ = 640;double HighWidthHeightRatio = 25;double LowWidthHeightRatio = 0.05;
};#endif // !YOLO_H
yolo.cpp
#include "yolo.h"YOLO::YOLO()
{}YOLO::~YOLO()
{}void YOLO::init(std::string onnxpath)
{this->net = cv::dnn::readNetFromONNX(onnxpath);
}void YOLO::detect(cv::Mat& frame, std::vector<detect_result>& results)
{int w = frame.cols;int h = frame.rows;int _max = std::max(h, w);cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);if(frame.channels()==1){cv::cvtColor(frame, frame, cv::COLOR_GRAY2BGR);} cv::Rect roi(0, 0, w, h);frame.copyTo(image(cv::Rect(0, 0, w, h)));float x_factor = static_cast<float>(image.cols) / model_input_width_;float y_factor = static_cast<float>(image.rows) / model_input_height_;cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(model_input_width_, model_input_height_), cv::Scalar(0, 0, 0), true, false);this->net.setInput(blob);cv::Mat preds = this->net.forward("output0");//outputname,使用Netron看一下输出的名字,一般为output0或者outputcv::Mat det_output(preds.size[1], preds.size[2], CV_32F, preds.ptr<float>());std::vector<cv::Rect> boxes;std::vector<int> classIds;std::vector<float> confidences;for (int i = 0; i < det_output.rows; i++){float box_conf = det_output.at<float>(i, 4);if (box_conf < nms_threshold_){continue;}cv::Mat classes_confidences = det_output.row(i).colRange(5, 6);cv::Point classIdPoint;double cls_conf;cv::minMaxLoc(classes_confidences, 0, &cls_conf, 0, &classIdPoint);if (cls_conf > confidence_threshold_){float cx = det_output.at<float>(i, 0);float cy = det_output.at<float>(i, 1);float ow = det_output.at<float>(i, 2);float oh = det_output.at<float>(i, 3);int x = static_cast<int>((cx - 0.5 * ow) * x_factor);int y = static_cast<int>((cy - 0.5 * oh) * y_factor);int width = static_cast<int>(ow * x_factor);int height = static_cast<int>(oh * y_factor);cv::Rect box;box.x = x;box.y = y;box.width = width;box.height = height;boxes.push_back(box);classIds.push_back(classIdPoint.x);confidences.push_back(cls_conf * box_conf);}}std::vector<int> indexes;cv::dnn::NMSBoxes(boxes, confidences, confidence_threshold_, nms_threshold_, indexes);for (size_t i = 0; i < indexes.size(); i++){detect_result dr;int index = indexes[i];int idx = classIds[index];dr.box = boxes[index];dr.classId = idx;dr.confidence = confidences[index];results.push_back(dr);}std::vector<cv::Rect>().swap(boxes);std::vector<int>().swap( classIds);std::vector<float>().swap( confidences);std::vector<int>().swap( indexes);
}void YOLO::draw_frame(cv::Mat& frame, std::vector<detect_result>& results)
{for (auto dr : results){cv::rectangle(frame, dr.box, cv::Scalar(0, 0, 255), 2, 8);cv::rectangle(frame, cv::Point(dr.box.tl().x, dr.box.tl().y - 20), cv::Point(dr.box.br().x, dr.box.tl().y), cv::Scalar(255, 0, 0), -1);std::string label = cv::format("%.2f", dr.confidence);label = dr.classId + ":" + label;cv::putText(frame, label, cv::Point(dr.box.x, dr.box.y + 6), 1, 2, cv::Scalar(0, 255, 0), 2);}}
下面是调用函数编写部分
#include<string>
#include"yolo.h"
#include<opencv2\opencv.hpp>
#include<iostream>
int main(){YOLO* yolo = new YOLO;std::string modelPath = "C:\\Resource\\model\\XXX.onnx";//模型的地址std::string imgPath= "C:\\Resource\\model\\XXX.jpg";//模型的地址//clock_t start_times{},end_times{};yolo->init(modelPath);std::vector<detect_result> output;cv::Mat yoloImages = cv::imread(imgPath);if(!yoloImages.empty()){ //start_times= clock();yolo->detect(yoloImages, output);yolo->draw_frame(yoloImages, output);//end_times = clock();//double FPS = 1 / ((double)(end_times - start_times) / CLOCKS_PER_SEC);cv::imshow("images", yoloImages);cv::waitKey(1);std::vector<detect_result>().swap(output);std::string().swap(model);if(yolo!=NULL){delete yolo;yolo =NULL;}}
}
相关文章:
使用C++版本的opencv dnn 部署onnx模型
使用OpenCV的DNN模块在C中部署ONNX模型涉及几个步骤,包括加载模型、预处理输入数据、进行推理以及处理输出。 构建了yolo类,方便调用 yolo.h 文件 #ifndef YOLO_H #define YOLO_H #include <fstream> #include <sstream> #include <io…...
python中实现队列功能
【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 python中实现队列功能 选择题 以下代码最后一次输出的结果是? from collections import deque queue deque() queue.append(1) queue.append(2) queue.append(3) print(【显示】…...
自然资源-关于城镇开发边界局部优化的政策思路梳理
自然资源-关于城镇开发边界局部优化的政策思路梳理 国土空间规划的核心之一是要统筹划定“三区三线”,三条控制线中的城镇开发边界的划定与优化工作,一直是国土空间规划改革的重要组成部分,其有助于遏制城市盲目扩张,强化底线约束…...
ElementUI的Table组件在无数据情况下让“暂无数据”文本居中显示
::v-deep .el-table__empty-block {width: 100%;min-width: 100%;max-width: 100%; }...
ant design的upload组件踩坑记录
antd版本 v4.17.0 1.自定义了onpreview和onchange事件,上传文件后,文件显示有preview的icon但是被禁用,无法调用onpreview事件。 问题展现: 苦苦查找原因,问题出在了这里,当文件没有url的时候,…...
Python私教张大鹏 Vue3整合AntDesignVue之按钮组件
何时使用 标记了一个(或封装一组)操作命令,响应用户点击行为,触发相应的业务逻辑。 在 Ant Design Vue 中我们提供了五种按钮。 主按钮:用于主行动点,一个操作区域只能有一个主按钮。默认按钮࿱…...
【小海实习日记】PHP安装
## PHP环境搭建(Mac) ### php安装 使用brew需要安装homebrew >brew tap shivammathur/php >brew install shivammathur/php/php7.3 >brew link php7.3 这里可以需要homebrew使用代理进行下载,如果代理下载速度还是太慢,建议直接更该国内镜像…...
C++ Primer Chapter 4 Expressions
Chapter 4 Expressions 4.11 类型转换 4.11.2 其他隐式类型转换 数组转换成指针: 在大多数用到数组的表达式中,数组自动转换成指向数组首元素的指针: int ia[10]; int* ipa;♜ 当数组被用作decltype关键字的参数,或者作为取地…...
[leetcode hot 150]第一百三十七题,只出现一次的数字Ⅱ
题目: 给你一个整数数组 nums ,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法且使用常数级空间来解决此问题。 由于需要常数级空间和线性时间复杂度…...
wpf工程中加入Hardcodet.NotifyIcon.Wpf生成托盘
1、在项目中用nuget引入Hardcodet.NotifyIcon.Wpf。如下图所示。 2、在App.xaml中创建托盘界面,代码是写在 App.xaml 里面 注意在application中一定要加入这一行代码: xmlns:tb"http://www.hardcodet.net/taskbar" 然后在<Application.R…...
keil下载及安装(社区版本)
知不足而奋进 望远山而前行 目录 文章目录 前言 Keil有官方版本和社区版本,此文章为社区版本安装,仅供参考。 1.keil MDK 2.keil社区版介绍 3.keil下载 (1)打开进入登录界面 (2)点击下载,跳转到信息页面 (3)填写个人信息,点击提交 (4)点击下载…...
python书上的动物是啥
Python的创始人为Guido van Rossum。1989年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,做为ABC语言的一种继承。之所以选中Python作为程序的名字,是因为他是一个叫Monty Python…...
数据库管理-第198期 升级Oracle ACE Pro,新赛季继续努力(20240605)
数据库管理198期 2024-06-05 数据库管理-第198期 升级ACE Pro,新赛季继续努力(20240605)1 惊喜2 变化3 Oracle ACE总结 数据库管理-第198期 升级ACE Pro,新赛季继续努力(20240605) 作者:胖头鱼的…...
华为坤灵交换机S300, S500, S210,S220, S200, S310 如何WEB抓包
通过S系列交换机配置端口镜像实现抓包 1、应用场景 端口镜像是指将经过指定端口(源端口或者镜像端口)的报文复制一份到另一个指定端口(目的端口或者观察端口)。 在网络运营与维护的过程中,为了便于业务监测和故障定位,网络管理员时常要获取设备上的业务…...
【亚马逊云科技 CSDN 联合巨献】 「对话AI 构建者:从基础到应用的 LLM 全景培训」 限时免费!
🚀🌟【亚马逊云科技 & CSDN 联合巨献】 📚「对话AI 构建者:从基础到应用的 LLM 全景培训」🔥 限时免费! 📆 抓紧时间!6月7日前注册,原价 399,现在仅需 0…...
【AI大模型】Function Calling
目录 什么是Function Calling 示例 1:调用本地函数 Function Calling 的注意事项 支持 Function Calling 的国产大模型 百度文心大模型 MiniMax ChatGLM3-6B 讯飞星火 3.0 通义千问 几条经验总结 什么是Function Calling Function Calling 是一种函数调用机…...
零钱兑换 - LeetCode 热题 85
大家好!我是曾续缘🤪 今天是《LeetCode 热题 100》系列 发车第 85 天 动态规划第 5 题 ❤️点赞 👍 收藏 ⭐再看,养成习惯 零钱兑换 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount &…...
基于web的垃圾分类回收系统的设计
管理员账户功能包括:系统首页,个人中心,管理员管理,用户管理,公告管理,运输管理,基础数据管理 用户账户功能包括:系统首页,个人中心,运输管理,公告…...
优化你的WordPress网站:内链建设与Link Whisper Pro插件的利用
文章目录 内链的重要性WordPress SEO插件:Link Whisper Pro主要功能使用指南下载与安装 结语 在数字营销和网站管理领域,SEO内部优化是提升网站排名、增加流量和提高用户参与度的核心策略。在众多SEO技巧中,内链建设是构建良好网站结构和提升…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...
2.2.2 ASPICE的需求分析
ASPICE的需求分析是汽车软件开发过程中至关重要的一环,它涉及到对需求进行详细分析、验证和确认,以确保软件产品能够满足客户和用户的需求。在ASPICE中,需求分析的关键步骤包括: 需求细化:将从需求收集阶段获得的高层需…...
