当前位置: 首页 > news >正文

MySQL深分页,limit 100000,10 优化

文章目录

  • 一、limit深分页为什么会变慢
  • 二、优化方案
    • 2.1 通过子查询优化(覆盖索引)
      • 回顾B+树结构
      • 覆盖索引
      • 把条件转移到主键索引树
    • 2.2 INNER JOIN 延迟关联
    • 2.3 标签记录法(要求id是有序的)
    • 2.4 使用between...and...

我们日常做分页需求时,一般会用limit实现,但是当偏移量特别大的时候,查询效率就变得低下。本文将分4个方案,讨论如何优化MySQL百万数据的深分页问题.

参考 实战!聊聊如何解决MySQL深分页问题

一、limit深分页为什么会变慢

表结构

CREATE TABLE account (id int(11) NOT NULL AUTO_INCREMENT COMMENT '主键Id',name varchar(255) DEFAULT NULL COMMENT '账户名',balance int(11) DEFAULT NULL COMMENT '余额',create_time datetime NOT NULL COMMENT '创建时间',update_time datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',PRIMARY KEY (id),KEY idx_name (name),KEY idx_update_time (update_time) //索引
) ENGINE=InnoDB AUTO_INCREMENT=1570068 DEFAULT CHARSET=utf8 ROW_FORMAT=REDUNDANT COMMENT='账户表';

执行的深分页SQL为

select id,name,balance from account where update_time> '2020-09-19' limit 100000,10;

这个SQL的执行时间如下:

img

执行完需要0.742秒,深分页为什么会变慢呢?如果换成 limit 0,10,只需要0.006秒哦

img

我们先来看下这个SQL的执行流程

  1. 通过普通二级索引树idx_update_time,过滤update_time条件,找到满足条件的记录ID。

  2. 通过ID,回到主键索引树,找到满足记录的行,然后取出展示的列(回表

  3. 扫描满足条件的100010行,然后扔掉前100000行,返回。

    (每一条select语句都会从1遍历至当前位置,若跳转到第10000页,则会遍历100000条记录)

在这里插入图片描述

执行计划如下: img

SQL变慢原因有两个

  1. limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10,就会扫描100010行,而limit 0,10,只扫描10行。
  2. limit 100000,10 扫描更多的行数,也意味着回表更多的次数。

二、优化方案

2.1 通过子查询优化(覆盖索引)

因为以上的SQL,回表了100010次,实际上,我们只需要10条数据,也就是我们只需要10次回表其实就够了。因此,我们可以通过减少回表次数来优化。

回顾B+树结构

如何减少回表次数呢?我们先来复习下B+树索引结构

InnoDB中,索引分主键索引(聚簇索引)和二级索引

  • 主键索引,叶子节点存放的是整行数据
  • 二级索引,叶子节点存放的是主键的值

img

覆盖索引

覆盖索引(covering index ,或称为索引覆盖)即从非主键索引中就能查到的记录,而不需要查询主键索引中的记录,避免了回表的产生减少了树的搜索次数,显著提升性能。

如何确定数据库成功使用了覆盖索引呢? —— 当发起一个索引覆盖查询时,在explain的extra列可以看到using index的信息

在这里插入图片描述

可以看到Extra中的Using index,表明我们成功使用了覆盖索引

把条件转移到主键索引树

如果我们把查询条件,转移回到主键索引树,那就不就可以减少回表次数啦。转移到主键索引树查询的话,查询条件得改为主键id了,之前SQL的update_time这些条件咋办呢?抽到子查询那里嘛~

子查询那里怎么抽的呢?因为二级索引叶子节点是有主键ID的,所以我们直接根据update_time来查主键ID即可,同时我们把 limit 100000的条件,也转移到子查询,完整SQL如下:

select id,name,balance FROM account where id >= (select a.id from account a where a.update_time >= '2020-09-19' limit 100000, 1) LIMIT 10; -- (可以加下时间条件到外面的主查询)

查询效果一样的,执行时间只需要0.038秒! 0.742秒 ——> 0.038秒

img

我们来看下执行计划 img

由执行计划得知,子查询 table a查询是用到了idx_update_time索引。首先在索引上拿到了聚集索引的主键ID,省去了回表操作,然后第二查询直接根据第一个查询的ID往后再去查10个就可以了!

img

所谓的覆盖索引就是从普通索引树中就能查到的想要数据,而不需要通过回表从主键索引中查询其他列,能够显著提升性能。

因此,这个方案是可以的~

2.2 INNER JOIN 延迟关联

延迟关联的优化思路,跟子查询的优化思路其实是一样的:都是把条件转移到主键索引树,然后减少回表。不同点是,延迟关联使用了inner join代替子查询。

优化后的SQL如下:

SELECT  acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.update_time >= '2020-09-19' ORDER BY a.update_time LIMIT 100000, 10) AS  acct2 on acct1.id= acct2.id;

查询效果也是杠杆的,只需要0.034秒

img

执行计划如下:

img

查询思路就是,先通过idx_update_time二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。

2.3 标签记录法(要求id是有序的)

limit 深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉。这样就导致查询性能的下降

其实我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦

select id,name,balance from account limit 1000000,10;

假设上一次记录到100000,则SQL可以优化为:

select id,name,balance FROM account where id > 100000 order by id limit 10;

这样的话,后面无论翻多少页,性能都会不错的,因为命中了id索引。但是你,这种方式有局限性:要求id连续的、并且有序

在有序的条件下,也可以使用比如创建时间等其他字段来代替主键id,但是前提是这个字段是建立了索引的。

id不是连续,我们可以通过order by让它连续

总之,使用条件过滤的方式来优化 limit 是有诸多限制的,一般还是推荐使用覆盖索引的方式来优化。

2.4 使用between…and…

很多时候,可以将limit查询转换为已知位置的查询,这样MySQL通过范围扫描between...and,就能获得到对应的结果。

select id,name,balance from account limit 1000000,10;

如果知道边界值为100000,100010后,就可以这样优化:

select id,name,balance FROM account where id between 100000 and 100010 order by id desc;

相关文章:

MySQL深分页,limit 100000,10 优化

文章目录 一、limit深分页为什么会变慢二、优化方案2.1 通过子查询优化(覆盖索引)回顾B树结构覆盖索引把条件转移到主键索引树 2.2 INNER JOIN 延迟关联2.3 标签记录法(要求id是有序的)2.4 使用between...and... 我们日常做分页需…...

Windows defender 开启时无法访问共享文件夹,禁用时却可以的解决方法

...

Linux[高级管理]——使用源码包编译安装Apache网站

🏡作者主页:点击! 👨‍💻Linux高级管理专栏:点击! ⏰️创作时间:2024年5月31日14点20分 🀄️文章质量:96分 在Linux系统上编译和安装Apache HTTP Server是…...

Docker+JMeter+InfluxDB+Grafana 搭建性 能监控平台

JMeter原生报告的缺点: 无法实时共享 报告信息的展示不美观 需求方案 为了解决上述问题,可以通过 InfluxDB Grafana解决 : InfluxDB :是一个开源分布式指标数据库,使用 Go 语言编写,无需外部依赖 应用&am…...

NoSQL实战(MongoDB搭建主从复制)

什么是复制集? MongoDB复制是将数据同步到多个服务器的过程; 复制集提供了数据的冗余备份并提高了数据的可用性,通常可以保证数据的安全性; 复制集还允许您从硬件故障和服务中断中恢复数据。 保障数据的安全性 数据高可用性 (2…...

【讯为Linux驱动开发】3.内核空间和用户空间

【问】内存空间的组成部分?? 内存空间分为内核空间和用户空间 1.内核空间控制硬件资源,提供系统调用接口,保护系统自身安全稳定 2.用户空间实现业务逻辑 【问】如何进入内核空间使用硬件资源? 1.系统调用 2.软中断 3.…...

AI论文:一键生成论文的高效工具

说到这个问题,那真的得看你对“靠谱”的定义是怎样的啦? 众所周知,写论文是一项极其耗时间的事情,从开始的选题到文献资料搜索查阅,大纲整理等等一大堆的繁杂工作是极艰辛的。用AI写论文就不一样了,自动化…...

申请医疗设备注册变更时,需要补充考虑网络安全的情况有哪些?

在申请医疗器械设备注册变更时,需要补充网络安全的情况主要包括以下几点: 网络安全功能更新:如果医疗器械的自研软件发生网络安全功能更新,或者合并网络安全补丁更新的情形,需要单独提交一份自研软件网络安全功能更新…...

打对钩的方式做人机验证(vue+javascript)

要实现一个通过打对钩方式的人机验证,并且让它不容易被破解,可以考虑以下几点: 动态生成选项和题目:每次生成的验证选项和题目都不一样,防止简单的脚本通过固定的答案绕过验证。使用图像和文字混合验证:增…...

可视化脚本用于使用MMDetection库进行图像的目标检测

# Copyright (c) OpenMMLab. All rights reserved. import asyncio from argparse import ArgumentParserfrom mmdet.apis import (async_inference_detector, inference_detector,init_detector, show_result_pyplot) import denseclip# 解析命令行参数 def parse_args():pars…...

React-组件通信

组件通信 概念:组件通信就是组件之间的数据传递,根据组件嵌套关系的不同,有不同的通信方法 父传子 基础实现 实现步骤: 1.父组件传递数据-在子组件标签上绑定属性 2.子组件接收数据-子组件通过props参数接收数据 props说明 1.…...

低代码选型要注意什么问题?

低代码选型时,确实需要从多个角度综合考虑,以下是根据您给出的角度进行的分析和建议: 公司的人才资源: 评估团队中是否有具备编程能力的开发人员,以确保能够充分利用低代码平台的高级功能和进行必要的定制开发。考察实…...

hive切换spark引擎倒入数据乱码

...

fpga入门 串口定时1秒发送1字节

一、 程序说明 FPGA通过串口定时发送数据,每秒发送1字节,数据不断自增 参考小梅哥教程 二、 uart_tx.v timescale 1ns / 1psmodule uart_tx(input wire sclk,input wire rst_n,output reg uart_tx);parameter …...

总结一下自己,最近三年,我做了哪些工作

简单总结下吧,我算是业务架构师,确实对得起这个名字,经常冲在一线,业务和架构相关的东西都有做,系统比较复杂,不过逐步了解谁都会熟悉的 下面简单列一列我这三年的工作情况吧,也算是给自己一个交…...

SpringCloud Gateway基础入门与使用实践总结

官网文档:点击查看官网文档 Cloud全家桶中有个很重要的组件就是网关,在1.x版本中都是采用的Zuul网关。但在2.x版本中,zuul的升级一直跳票,SpringCloud最后自己研发了一个网关替代Zuul,那就是SpringCloud Gateway一句话…...

TensorBoard在pytorch训练过程中如何使用,及数据读取问题解决方法

TensorBoard 模块导入日志记录文件的创建训练中如何写入数据如何提取保存的数据调用TensorBoard面板可能会遇到的问题 模块导入 首先从torch中导入tensorboard的SummaryWriter日志记录模块 from torch.utils.tensorboard import SummaryWriter然后导入要用到的os库&#xff0…...

【Vue】普通组件的注册使用-全局注册

文章目录 一、使用步骤二、练习 一、使用步骤 步骤 创建.vue组件&#xff08;三个组成部分&#xff09;main.js中进行全局注册 使用方式 当成HTML标签直接使用 <组件名></组件名> 注意 组件名规范 —> 大驼峰命名法&#xff0c; 如 HmHeader 技巧&#xf…...

爬虫之反爬思路与解决手段

阅读时间建议&#xff1a;4分钟 本篇概念比较多&#xff0c;嗯。。 0x01 反爬思路与解决手段 1、服务器反爬虫的原因 因为爬虫的访问次数高&#xff0c;浪费资源&#xff0c;公司资源被批量抓走&#xff0c;丧失竞争力&#xff0c;同时也是法律的灰色地带。 2、服务器反什么…...

2.1.4 采用配置类与注解方式使用MyBatis

实战概述&#xff1a;采用配置类与注解方式使用MyBatis 创建MyBatis配置类 在net.huawei.mybatis.config包中创建MyBatisConfig类&#xff0c;用于配置MyBatis核心组件&#xff0c;包括数据源、事务工厂和环境设置。 配置数据源和事务 使用PooledDataSource配置MySQL数据库连接…...

微信小程序云开发实现利用云函数将数据库表的数据导出到excel中

实现目标 将所有订单信息导出到excel表格中 思路 1、在页面中bindtap绑定一个导出点击事件daochu() 2、先获取所有订单信息&#xff0c;并将数据添加到List数组中 3、传入以List数组作为参数&#xff0c;调用get_excel云函数 4、get_excel云函数利用node-xlsx第三方库&#…...

python 字符串(str)、列表(list)、元组(tuple)、字典(dict)

学习目标: 1:能够知道如何定义一个字符串; [重点] 使用双引号引起来: 变量名 "xxxx" 2:能够知道切片的语法格式; [重点] [起始: 结束] 3:掌握如何定义一个列表; [重点] 使用[ ]引起来: 变量名 [xx,xx,...] 4:能够说出4个列表相关的方法; [了解] ap…...

【源码】SpringBoot事务注册原理

前言 对于数据库的操作&#xff0c;可能存在脏读、不可重复读、幻读等问题&#xff0c;从而引入了事务的概念。 事务 1.1 事务的定义 事务是指在数据库管理系统中&#xff0c;一系列紧密相关的操作序列&#xff0c;这些操作作为一个单一的工作单元执行。事务的特点是要么全…...

技巧:合并ZIP分卷压缩包

如果ZIP压缩文件文件体积过大&#xff0c;大家可能会选择“分卷压缩”来压缩ZIP文件&#xff0c;那么&#xff0c;如何合并zip分卷压缩包呢&#xff1f;今天我们分享两个ZIP分卷压缩包合并的方法给大家。 方法一&#xff1a; 我们可以将分卷压缩包&#xff0c;通过解压的方式…...

数据挖掘 | 实验三 决策树分类算法

文章目录 一、目的与要求二、实验设备与环境、数据三、实验内容四、实验小结 一、目的与要求 1&#xff09;熟悉决策树的原理&#xff1b; 2&#xff09;熟练使用sklearn库中相关决策树分类算法、预测方法&#xff1b; 3&#xff09;熟悉pydotplus、 GraphViz等库中决策树模型…...

Python机器学习预测区间估计工具库之mapie使用详解

概要 在数据科学和机器学习领域,预测的不确定性估计是一个非常重要的课题。Python的mapie库是一种专注于预测区间估计的工具,旨在提供简单易用的接口来计算和评估预测的不确定性。通过mapie库,用户可以为各种回归和分类模型计算预测区间,从而更好地理解模型预测的可靠性。…...

Linux基础指令磁盘管理002

LVM&#xff08;Logical Volume Manager&#xff09;是Linux系统中一种灵活的磁盘管理和存储解决方案&#xff0c;它允许用户在物理卷&#xff08;Physical Volumes, PV&#xff09;上创建卷组&#xff08;Volume Groups, VG&#xff09;&#xff0c;然后在卷组上创建逻辑卷&am…...

Python怎么添加库:深入解析与操作指南

Python怎么添加库&#xff1a;深入解析与操作指南 在Python编程中&#xff0c;库&#xff08;Library&#xff09;扮演着至关重要的角色。它们为我们提供了大量的函数、类和模块&#xff0c;使得我们可以更高效地编写代码&#xff0c;实现各种功能。那么&#xff0c;Python如何…...

Python | 虚拟环境的增删改查

mkvirtualenv创建虚拟环境 mkvirtualenv是用于在Pyhon中创建虚拟环境的命令。它通过使用vitualenv库来创建一个隔离的Python环境&#xff0c;以便您可以安装特定版本的Python包&#xff0c;而不会影响全局Python环境。 使用方法: 安装virtualenv&#xff1a;pip install vir…...

【MySQL数据库】:MySQL内外连接

目录 内外连接和多表查询的区别 内连接 外连接 左外连接 右外连接 简单案例 内外连接和多表查询的区别 在 MySQL 中&#xff0c;内连接是多表查询的一种方式&#xff0c;但多表查询包含的范围更广泛。外连接也是多表查询的一种具体形式&#xff0c;而多表查询是一个更…...