transformers DataCollator介绍
本博客主要介绍 transformers DataCollator的使用
from transformers import AutoTokenizer, AutoModel, \DataCollatorForSeq2Seq, DataCollatorWithPadding, \DataCollatorForTokenClassification, DefaultDataCollator, DataCollatorForLanguageModelingPRETRAIN_MODEL = "E:\pythonWork\models\chinese-roberta-wwm-ext"
tokenizer = AutoTokenizer.from_pretrained(PRETRAIN_MODEL)
model = AutoModel.from_pretrained(PRETRAIN_MODEL)texts = ['今天天气真好。', "我爱你"]
encodings = tokenizer(texts)labels = [list(range(len(each))) for each in texts]inputs = [{"input_ids":t, "labels": l} for t,l in zip(encodings['input_ids'], labels)]dc1 = DefaultDataCollator()
dc2 = DataCollatorForTokenClassification(tokenizer=tokenizer)
dc3 = DataCollatorWithPadding(tokenizer=tokenizer)
dc4 = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
d5 = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
d6 = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)print('DataCollatorForTokenClassification')
print(dc2(inputs))print('DataCollatorWithPadding')
print(dc3(encodings))print('DataCollatorForSeq2Seq')
print(dc4(inputs))print(123)
DataCollatorForTokenClassification
观察如下输出,token分类任务中,每个token都应该有一个标签,所以存在以下数量关系:
ids==labels
ids进行了填充,
labels进行了填充
attention_mask进行了填充
DataCollatorForTokenClassification
{'input_ids': tensor([[ 101, 791, 1921, 1921, 3698, 4696, 1962, 511, 102],[ 101, 2769, 4263, 872, 102, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 0, 0, 0, 0]]), 'labels': tensor([[ 0, 1, 2, 3, 4, 5, 6, -100, -100],[ 0, 1, 2, -100, -100, -100, -100, -100, -100]])}
DataCollatorWithPadding
ids进行了填充,
labels进行了填充
attention_mask进行了填充
DataCollatorWithPadding
{'input_ids': tensor([[ 101, 791, 1921, 1921, 3698, 4696, 1962, 511, 102],[ 101, 2769, 4263, 872, 102, 0, 0, 0, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 0, 0, 0, 0]])}
DataCollatorForSeq2Seq
ids !=labels (注意和DataCollatorForTokenClassification进行区分)
ids进行了填充,
labels进行了填充
attention_mask进行了填充
DataCollatorForSeq2Seq
{'input_ids': tensor([[ 101, 791, 1921, 1921, 3698, 4696, 1962, 511, 102],[ 101, 2769, 4263, 872, 102, 0, 0, 0, 0]]), 'labels': tensor([[ 0, 1, 2, 3, 4, 5, 6],[ 0, 1, 2, -100, -100, -100, -100]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 0, 0, 0, 0]])}
相关文章:
transformers DataCollator介绍
本博客主要介绍 transformers DataCollator的使用 from transformers import AutoTokenizer, AutoModel, \DataCollatorForSeq2Seq, DataCollatorWithPadding, \DataCollatorForTokenClassification, DefaultDataCollator, DataCollatorForLanguageModelingPRETRAIN_MODEL &qu…...
rust学习(字节数组转string)
最新在写数据传输相关的操作,发现string一个有趣的现象,代码如下: fn main() {let mut data:[u8;32] [0;32];data[0] a as u8;let my_str1 String::from_utf8_lossy(&data);let my_str my_str1.trim();println!("my_str len is…...
Docker:技术架构演进
文章目录 基本概念架构演进单机架构应用数据分离架构应用服务集群架构读写分离/主从分离架构冷热分离架构垂直分库微服务容器编排架构 本篇开始进行对于Docker的学习,Docker是一个陌生的词汇,那么本篇开始就先从技术架构的角度出发,先对于技术…...
汽车MCU虚拟化--对中断虚拟化的思考(2)
目录 1.引入 2.TC4xx如何实现中断虚拟化 3.小结 1.引入 其实不管内核怎么变,针对中断虚拟化无非就是上面两种,要么透传给VM,要么由Hypervisor统一分发。汽车MCU虚拟化--对中断虚拟化的思考(1)-CSDN博客 那么,作为车规MCU龙头…...
python的继承
本章正式开始之前,先让我们回顾一下什么是 对象 ? 什么是 类 ? 小贝 喜欢 猫咪,今年领养了一只名叫 Kitty 的 布偶猫。则下列哪项是 对象 呢? A. 猫咪 B. Kitty C. 布偶猫 相比之下,闻闻 更喜欢 犬科 动…...
组件的注册和引用
在Vue中,开发者可以将页面中独立的、可重用的部分封装成组件,对组件的结构,样式和行为进行设置。组件是 Vue 的基本结构单元,组件之间可以相互引用。 一.注册组件 当在Vue项目中定义了一个新的组件后,要想在其他组件中…...
诊所如何赢得患者?做好这两点很关键!
大家都知道,社区周边的诊所原本是居民看病的第一选择,方便又快捷。但现在很多诊所服务都差不多,没有自己的特色,这就让患者有点难选择了。那诊所怎么做才能更吸引患者呢?其实,关键是要抓住患者的心…...
Qwen2本地部署的实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…...
html+CSS+js部分基础运用15
1、完成输入框内容的实时反向输出。 2、银行账户余额变动自动通知项目。 设计要求:单击按钮后,余额按照输入框的数额减少,同时将按钮式的提示信息(金额)同步改变。利用侦听属性实现余额发生变化时发出提示信息&#x…...
从零开始学JAVA
一、编写Hello world程序 public class JavaMain1 {//主程序执行入口,main方法public static void main(String[] args){System.out.println("Hello world!");} } 运行结果 Hello world! java编写主程序常见错误: 1、System ---首字母没有…...
MySQL(四)查询
1、MySQL限性约束 —非空、唯一(自增)、主外键、检查(MySQL存在但是不能用)。 约束主要完成对数据的校验,保证数据库数据的完整性;如果有相互依赖数据,保证该数据不被删除。 1)常用五类约束 not null :非空约束,指定某列不为空。 unique:唯一约束,指定某列和几列组…...
嵌入式学习——网络编程(TCP)——day31
1. TCP和UDP的区别 TCP(Transmission Control Protocol,传输控制协议) UDP(User Datagram Protocol,用户数据报协议) 1.1 连接方式 TCP 是面向连接的协议,它在数据传输前需要通过三次握手建立…...
[STM32]定位器与PWM的LED控制
目录 1. 深入了解STM32定时器原理,掌握脉宽调制pwm生成方法。 (1)STM32定时器原理 原理概述 STM32定时器的常见模式 使用步骤 (2)脉宽调制pwm生成方法。 2. 实验 (1)LED亮灭 代码 测试效果 (2)呼吸灯 代码 测试效果 3.总结 1. 深入了解STM32定时器原…...
可视化数据科学平台在信贷领域应用系列五:零代码可视化建模
信贷风控模型是金融机构风险管理的核心工具,在信贷风险管理工作中扮演着至关重要的角色。随着信贷市场的环境不断变化,信贷业务的风险日趋复杂化和隐蔽化,开发和应用准确高效的信贷风控模型显得尤为重要。信贷风险控制面临着越来越大的挑战和…...
Windows 11广告植入“另辟蹊径”:PC Manager暗示若不使用必应搜索,你的系统可能需要“修复”
Edge浏览器近期增添了许多实用的新功能,如侧边栏、休眠标签页和沉浸式阅读器。话虽如此,浏览器中仍有一部分功能被部分用户视为“冗余软件”和不必要的累赘。 随着Windows 11用户逐渐习惯操作系统关键位置出现越来越多的广告,微软似乎正尝试以…...
一线教师教学工具汇总
亲爱的教师们!我们的教学工具箱里也该更新换代啦!今天,就让我来给大家安利一波超实用的教学神器: 百度文库小程序 —— 在线图书馆 百度文库,一个宝藏级的在线文档分享平台!在这里,你可以找到海…...
【数据结构】栈和队列-->理解和实现(赋源码)
Toc 欢迎光临我的Blog,喜欢就点歌关注吧♥ 前面介绍了顺序表、单链表、双向循环链表,基本上已经结束了链表的讲解,今天谈一下栈、队列。可以简单的说是前面学习的一特殊化实现,但是总体是相似的。 前言 栈是一种特殊的线性表&…...
一篇教会你CSS定位
前言:在网页布局的时候,我们需要将想要的元素放到指定的位置上,这个时候我们就可以使用CSS中的定位操作。 先让我们看一下本篇文章的大致内容: 目录 什么是定位 1.相对定位 2.绝对定位 3. 固定定位 4. 粘性定位 5. 定位层级…...
Hive的常规操作
Hive常规操作 hive常用交互命令 -e执行sql语句 [rootmaster ~]# hive -e "show databases";-f执行sql脚本 [rootmaster ~]# hive -f /usr/local/demo.sql查看hive中输入的所有命令 [rootmaster ~]# cat ~/.hivehistory操作库 创建库 语法: create…...
redis做为缓存,mysql的数据如何与redis进行同步呢?
让我们一步步来实现如何让MySQL数据库的数据和Redis缓存保持同步。想象一下,MySQL是一个大仓库,存放着所有重要的货物(数据),而Redis则像是一个快速取货窗口,让你能更快拿到常用的东西。为了让两者保持一致…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
