当前位置: 首页 > news >正文

Tensorflow音频分类

tensorflow

https://www.tensorflow.org/lite/examples/audio_classification/overview?hl=zh-cn

官方有移动端demo

前端不会  就只能找找有没有java支持

注意版本

注意JDK版本

package com.example.demo17.controller;import org.tensorflow.*;
import org.tensorflow.ndarray.*;
import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray;
import org.tensorflow.proto.framework.DataType;
import org.tensorflow.proto.framework.MetaGraphDef;
import org.tensorflow.proto.framework.SignatureDef;
import org.tensorflow.proto.framework.TensorInfo;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TInt64;import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.UnsupportedAudioFileException;
import javax.xml.transform.Result;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;public class Test {private static FloatNdArray t1() {
//        String audioFilePath = "D:\\ai\\cat.wav";String audioFilePath = "C:\\Users\\user\\Downloads\\output_Wo9KJb-5zuz1_2.wav";
//        String audioFilePath = "D:\\ai\\111\\111.wav";// YAMNet期望的采样率int sampleRate = 16000;// YAMNet帧大小,0.96秒int frameSizeInMs = 96;// YAMNet帧步长,0.48秒int hopSizeInMs = 48;try (AudioInputStream audioStream = AudioSystem.getAudioInputStream(Paths.get(audioFilePath).toFile())) {AudioFormat format = audioStream.getFormat();if (format.getSampleRate() != sampleRate || format.getChannels() != 1) {System.out.println("Warning: Audio must be 16kHz mono. Consider preprocessing.");}int frameSize = (int) (sampleRate * frameSizeInMs / 1000);int hopSize = (int) (sampleRate * hopSizeInMs / 1000);byte[] buffer = new byte[frameSize * format.getFrameSize()];short[] audioSamples = new short[frameSize];// 存储每个帧的音频数据List<Float> floatList = new ArrayList<>();while (true) {int bytesRead = audioStream.read(buffer);if (bytesRead == -1) {break;}// 将读取的字节转换为short数组(假设16位精度)for (int i = 0; i < bytesRead / format.getFrameSize(); i++) {audioSamples[i] = (short) ((buffer[i * 2] & 0xFF) | (buffer[i * 2 + 1] << 8));}// 对当前帧进行处理(例如,归一化和准备送入模型)float[] floats = processFrame(audioSamples);for (float aFloat : floats) {floatList.add(aFloat);}// 移动到下一个帧System.arraycopy(audioSamples, hopSize, audioSamples, 0, frameSize - hopSize);}// 将List<Float>转换为float[]float[] floatArray = new float[floatList.size()];for (int i = 0; i < floatList.size(); i++) {floatArray[i] = floatList.get(i);}return StdArrays.ndCopyOf(floatArray);} catch (UnsupportedAudioFileException | IOException e) {e.printStackTrace();}return null;}private static float[] processFrame(short[] frame) {// 示例:归一化音频数据到[-1.0, 1.0]float[] normalizedFrame = new float[frame.length];for (int i = 0; i < frame.length; i++) {// short的最大值为32767,故除以32768得到[-1.0, 1.0]normalizedFrame[i] = frame[i] / 32768f;}return normalizedFrame;}static Map<String,String> map=new ConcurrentHashMap<>();public static void main(String[] args) throws Exception {FloatNdArray floatNdArray = t1();TFloat32 tFloat32 = TFloat32.tensorOf(floatNdArray);//SavedModelBundle savedModelBundle = SavedModelBundle.load("D:\\saved_model", "serve");SavedModelBundle savedModelBundle = SavedModelBundle.load("C:\\Users\\user\\Downloads\\archive", "serve");Map<String, SignatureDef> signatureDefMap = MetaGraphDef.parseFrom(savedModelBundle.metaGraphDef().toByteArray()).getSignatureDefMap();/*** 获取基本定义信息*/SignatureDef modelSig = signatureDefMap.get("serving_default");String inputTensorName = modelSig.getInputsMap().get("waveform").getName();String outputTensorName = modelSig.getOutputsMap().get("output_0").getName();savedModelBundle.graph();try (Session session = savedModelBundle.session()) {/*JDK 17*/
//            Result run = session.runner()
//                    .feed(inputTensorName, tFloat32)
//                    .fetch(outputTensorName)
//                    .run();
//            Tensor out = run.get(0);
//            Shape shape = out.shape();
//
//            System.out.println(shape);/*JDK 8*/List<Tensor> run = session.runner().feed(inputTensorName, tFloat32).fetch(outputTensorName).run();Tensor tensor = run.get(0);Shape shape = tensor.shape();System.out.println(shape.asArray());String l=String.valueOf(shape.asArray()[0]);//读取CSV文件String csvFile = "C:\\Users\\user\\Downloads\\archive\\assets\\yamnet_class_map.csv";try {List<String> lines = Files.readAllLines(Paths.get(csvFile));for (String line : lines) {String[] values = line.split(",");map.put(values[0], values[2]);}} catch (IOException e) {e.printStackTrace();}String s = map.get(l);System.out.println(s);}}
}

相关文章:

Tensorflow音频分类

tensorflow https://www.tensorflow.org/lite/examples/audio_classification/overview?hlzh-cn 官方有移动端demo 前端不会 就只能找找有没有java支持 注意版本 注意JDK版本 package com.example.demo17.controller;import org.tensorflow.*; import org.tensorflow.ndarra…...

mqtt-emqx:keepAlive机制测试

mqtt keepAlive原理详见【https://www.emqx.com/zh/blog/mqtt-keep-alive】 # 下面开始写测试代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2…...

C++基础7:STL六大组件

目录 一、标准容器 1、顺序容器 vector ​编辑 deque list 容器适配器 stack queue prority_queue: 关联容器 有序关联容器set、mutiset、map、mutimap 增删查O(log n) 无序关联容 unordered_set、unordered_mutiset、unordered_map、unordered_mutimap 增删…...

特别名词Test Paper1

特别名词Test Paper1 ability 能力abstract 摘要accountant 会计accuracy 准确度acid 酸action 行动activity 活动actor 男演员adult 成人adventure 冒险advertisements 广告&#xff0c;宣传advertising 广告advice 建议age 年龄agency 代理机构&#xff0c;中介agreement 同…...

每日题库:Huawe数通HCIA——全部【813道】

1.关于ARP报文的说法错误的是?单选 A.ARP报文不能被转发到其他广播域 B.ARP应答报文是单播方发送的 C.任何链路层协议都需要ARP协议辅助获取数据链路层标识 DARP请求报文是广播发送的 答案:C  解析: STP协议不需要ARP辅助 2.园区网络搭建时,使用以下哪种协议可以避免出现二层…...

#04 Stable Diffusion与其他AI图像生成技术的比较

文章目录 前言1. Stable Diffusion2. DALL-E3. GAN&#xff08;生成对抗网络&#xff09;4. VQ-VAE比较总结 前言 随着人工智能技术的飞速发展&#xff0c;AI图像生成技术已成为创意产业和科研领域的热点。Stable Diffusion作为其中的佼佼者&#xff0c;其性能和应用广受关注。…...

不确定性+电动汽车!含高比例新能源和多类型电动汽车的配电网能量管理程序代码!

前言 能源供应的可持续性和清洁性是当今世界共同关注的议题&#xff0c;配电网与可再生能源发电相结合&#xff0c;通过多能互补和梯级利用&#xff0c;在不同时空取长补短&#xff0c;提高能源利用率&#xff0c;减少温室气体排放&#xff0c;是解决能源短缺和环境问题的有效…...

准确-K8s系列文章-修改containerd 默认数据目录

修改 Kubernetes 集群中 containerd 默认数据目录为 /data/containerd 前言 本文档适用于 Kubernetes 1.24 及以上版本的集群&#xff0c;介绍如何将 containerd 默认的数据目录从 /var/lib/containerd 修改为 /data/containerd。 步骤 1. 停止 containerd 服务&#xff08…...

深入探索Linux命令:`aulastlog`

深入探索Linux命令&#xff1a;aulastlog 在Linux系统中&#xff0c;安全管理一直是管理员和用户关注的焦点。aulastlog是一个非常有用的工具&#xff0c;用于显示用户最近登录的日志。它通过分析/var/log/lastlog文件来提供这些信息&#xff0c;这个文件记录了系统上所有用户…...

Debezium日常分享系列之:Debezium 2.6.2.Final发布

Debezium日常分享系列之&#xff1a;Debezium 2.6.2.Final发布 一、新功能和改进1.Oracle 数据库查询过滤超过 1000 个表 二、修复和稳定性改进1.PostgreSQL 偏移刷新竞争条件2.Avro 兼容性 一、新功能和改进 1.Oracle 数据库查询过滤超过 1000 个表 Debezium Oracle 连接器允…...

PHP质量工具系列之phpmd

PHPMD PHP Mess Detector 它是PHP Depend的一个衍生项目&#xff0c;用于测量的原始指标。 PHPMD所做的是&#xff0c;扫描项目中可能出现的问题如&#xff1a; 可能的bug次优码过于复杂的表达式未使用的参数、方法、属性 PHPMD是一个成熟的项目&#xff0c;它提供了一组不同的…...

【java】速度搭建一个springboot项目

使用软件&#xff1a;IDEA&#xff0c;mysql 使用框架&#xff1a;springboot mybatis-plus druid 坑点 使用IDEA搭建一个springboot项目的时候&#xff0c;需要考虑一下IDEA版本支持的JDK版本以及maven版本。否则再构建项目&#xff0c;引入pom的时候就会报错。 需要检查…...

SystemVerilog测试框架示例

这里是一个完整的SystemVerilog测试框架示例&#xff0c;包括随机化测试和详细注释。 顶层模块 (Top Module) module top;// 信号声明logic clk;logic rst_n;// 接口实例化dut_if dut_if_inst(.clk(clk), .rst_n(rst_n));// DUT实例化 (假设DUT模块名为dut)dut u_dut(.clk(du…...

每天一个数据分析题(三百五十六)-图表决策树

图表决策树中将图表分成四类&#xff0c;分别是&#xff1f; A. 比较类 B. 序列类 C. 构成类 D. 描述类 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案...

Prism 入门06,发布订阅(入门完结)

本章节介绍使用 Prism 框架的消息聚合器 IEventAggregator ,实现如何进行消息发布,订阅,取消订阅的功能 继续使用上一章节使用的 Prism WPF 空模板项目 BlankApp1 1.首先,在使用 Prism 框架当中,进行事件消息的发布和订阅之前,需要定义发布事件的事件消息模型。如下所示:…...

2. pytorch环境安装

概述 ​ 本文提供基于Anaconda环境Windows11操作系统的Pytorch深度学习环境的配置。深度学习环境分为GPU和CPU两大部分。使用GPU进行环境配置&#xff0c;需要保证电脑配有独立显卡&#xff0c;并且显卡驱动安装正常&#xff0c;详情见前文。 1. 创建新的虚拟环境用来配置Pyt…...

力扣爆刷第148天之贪心算法五连刷(区间合并)

力扣爆刷第148天之贪心算法五连刷&#xff08;区间合并&#xff09; 文章目录 力扣爆刷第148天之贪心算法五连刷&#xff08;区间合并&#xff09;一、406. 根据身高重建队列二、452. 用最少数量的箭引爆气球三、435. 无重叠区间四、763. 划分字母区间五、56. 合并区间六、738.…...

JSON及Python操作JSON相关

JSON及Python操作JSON相关 Json简介及Python操作Json相关示例。 1. JSON概念及支持的数据类型 1.1 什么是 JSON&#xff1f; JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解…...

[ 网络通信基础 ]——网络的传输介质(双绞线,光纤,标准,线序)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;网络通信基础TCP/IP专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年6月8日14点23分 &#x1f004;️文章质量&#xff1a;94分 前言—— 在现代通信网络中&#xff0c;传输介质是数据传…...

Android 高德地图API(新版)

新版高德地图 前言正文一、创建应用① 获取PackageName② 获取调试版安全码SHA1③ 获取发布版安全码SHA1 二、配置项目① 导入SDK② 配置AndroidManifest.xml 三、获取当前定位信息① ViewBinding使用和导包② 隐私合规设置③ 权限请求④ 初始化定位⑤ 获取定位信息 四、显示地…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...