R语言数据分析15-xgboost模型预测
XGBoost模型预测的主要大致思路:
1. 数据准备
首先,需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。
步骤:
- 读取数据:从CSV文件或其他数据源读取数据。
- 数据清理:处理缺失值、异常值等。
- 数据转换:将因变量转换为因子类型,特征变量转换为适合模型输入的格式。
- 数据分割:将数据分为训练集和测试集,一般按照8:2的比例分割。
2. 特征工程
特征工程是提升模型性能的关键步骤。包括:
- 特征选择:选择对预测目标最重要的特征。
- 特征转换:将分类变量转换为数值变量(如独热编码)。
- 特征缩放:标准化或归一化特征值。
3. 转换数据格式
XGBoost需要输入数据为矩阵格式。因此,需要将数据转换为稀疏矩阵格式。
4. 训练模型
训练模型是整个过程的核心步骤。需要设置模型的参数,并使用训练数据进行训练。
关键点:
- 设置参数:包括树的深度、学习率、采样率等。
- 交叉验证:使用交叉验证找到最佳的迭代次数。
- 模型训练:使用最佳参数训练模型。
5. 模型调参
为了获得最佳模型性能,需要进行参数调优。常用的方法有网格搜索、随机搜索和贝叶斯优化。
6. 模型评估
使用测试集评估模型性能。常用的评估指标有准确率、精确率、召回率、F1分数等。
步骤:
- 生成预测值:使用测试集生成预测值。
- 计算评估指标:根据预测值和实际值计算模型性能指标。
7. 模型预测
使用训练好的模型对新数据进行预测。将新数据转换为与训练数据相同的格式,然后进行预测。
8. 模型保存和加载
训练好的模型可以保存到文件中,以便后续加载和使用。
步骤:
- 保存模型:将模型保存到文件中。
- 加载模型:从文件中加载模型,以便进行预测。
本文数据和代码案例
library(xgboost)
library(Metrics)
library(ggplot2)
library(readxl)
library(dplyr)# 读取数据
data <- read_excel("分析数据.xlsx")# 用每列的后一个值填充缺失值
data1 <- data %>%mutate(across(everything(), ~ ifelse(is.na(.), lead(.), .)))# 查看填充后的数据
head(data1)
# 分离特征和响应变量
X <- data1 %>% select(-ILI) # 移除ILI列
y <- data1$ILI
# 划分训练集和测试集
set.seed(123) # 确保可重复性
train_indices <- sample(1:nrow(data1), size = 0.7 * nrow(data1))
train_data <- X[train_indices, ]
train_label <- y[train_indices]
test_data <- X[-train_indices, ]
test_label <- y[-train_indices]
# 设置XGBoost参数
params <- list(booster = "gbtree",objective = "reg:squarederror",eta = 0.1
# 训练模型
model <- xgb.train(params, dtrain, nrounds = 150)# 预测
predictions <- predict(model, dtest)
# 输出评价指标
cat("R2:", R2, "\n")
cat("Adjusted R2:", adj_R2, "\n")
cat("RMSE:", RMSE, "\n")
cat("MSE:", MSE, "\n")
最终可视化评价指标
# 可视化
# 创建散点图和回归线
scatter_plot <- data.frame(Actual = test_label, Predicted = predictions) %>%ggplot(aes(x = Actual, y = Predicted)) +geom_point() +geom_smooth(method = "lm", col = "blue") +xlab("Actual ILI1") +ylab("Predicted ILI1") +ggtitle("Actual vs Predicted")# 设置标题居中
scatter_plot +theme(plot.title = element_text(hjust = 0.5))
思路主要是使用R语言进行XGBoost模型预测的流程包括数据准备、模型训练、参数调优、模型评估和预测。首先,加载数据并进行预处理,然后使用 xgb.cv 和 xgb.train 函数进行模型训练和交叉验证。接着,通过调整参数优化模型性能,最后使用测试集评估模型,并使用训练好的模型进行预测新数据。
数据和完整代码
创作不易,希望大家多多点赞收藏和评论!
相关文章:
R语言数据分析15-xgboost模型预测
XGBoost模型预测的主要大致思路: 1. 数据准备 首先,需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。 步骤: 读取数据:从CSV文件或其他数据源读取数据。数据清理:处理缺失值、异常值等…...
重构大学数学基础_week04_从点积理解傅里叶变换
这周我们来看一下傅里叶变换。傅里叶变换是一种在数学和许多科学领域中广泛应用的分析方法,它允许我们将信号或函数从其原始域(通常是时间域或空间域)转换到频域表示。在频域中,信号被表示为其组成频率的幅度和相位,这…...
Shell以及Shell编程
Shell的任务 ①分析命令; ②处理通配符、变量替换、命令替换、重定向、管道和作业控制; ③搜索命令并执行。 内部命令:内嵌在Shell中。 外部命令:存在于磁盘上的独立可执行文件。 #!/bin/bash #! 称为一个幻数&…...
从记忆到想象:探索AI的智能未来
引言 人工智能(AI)在信息处理、数据分析和任务自动化等方面展现了强大的能力。然而,在人类独有的记忆和想象力领域,AI仍然有很长的路要走。加利福尼亚大学戴维斯分校的心理学和神经科学教授查兰兰加纳特(Charan Ranga…...
“安全生产月”专题报道:AI智能监控技术如何助力安全生产
今年6月是第23个全国“安全生产月”,6月16日为全国“安全宣传咨询日”。今年全国“安全生产月”活动主题为“人人讲安全、个个会应急——畅通生命通道”。近日,国务院安委会办公室、应急管理部对开展好2024年全国“安全生产月”活动作出安排部署。 随着科…...
【转】ES, 广告索引
思考: 1)直接把别名切换到上一个版本索引 --解决问题 2)广告层级索引如何解决? -routing、join 3)查询的过程:query and fetch, 优化掉fetch 4)segment合并策略 5)全量写入时副…...
Unity学习要点
前言 学习Unity作为游戏开发的强大工具,对于初学者来说,掌握一些基础而实用的技巧是非常重要的。这不仅能帮助你更快地上手,还能在项目开发过程中提高效率。以下是一些Unity初学者的使用技巧,希望能为你的学习之旅提供帮助。 ##…...
简单使用phpqrcode 生成二维码图片
$path ROOT_PATH; //tp项目根路径 require_once $path.vendor/phpqrcode/phpqrcode.php; //加载phpqrcode库 $url http://.$_SERVER[HTTP_HOST]./home/index/detail?id.$param[id]; $value $url; //二维码内容 $errorCorrectionLevel L; //容错级别 $mat…...
软考架构-计算机网络考点
会超纲,3-5分 网络分类 按分布范围划分 局域网 LAN 10m-1000m左右 房间、楼宇、校园 传输速率高 城域网 MAN 10km 城市 广域网 WAN 100km以上 国家或全球(英特网) 按拓扑结构划分 总线型:利用率低、干…...
渗透测试之内核安全系列课程:Rootkit技术初探(三)
今天,我们来讲一下内核安全! 本文章仅提供学习,切勿将其用于不法手段! 目前,在渗透测试领域,主要分为了两个发展方向,分别为Web攻防领域和PWN(二进制安全)攻防领域。在…...
大模型日报2024-06-08
大模型日报 2024-06-08 大模型资讯 AI研究:通过消除矩阵乘法实现高效的大语言模型 摘要: 该AI研究探讨了通过消除矩阵乘法来实现高效且可扩展的大语言模型(LLMs)。此方法旨在提升模型性能,提供更快速和高效的计算方案。 AWS大力投…...
leetcode 1631.最小体力消耗路径
思路:BFS二分 这道题和洛谷上的那个“汽车拉力赛”那道题很相似,但是这道题相较于洛谷那个来说会简单一些。 这里作者一开始写的时候思路堵在了怎么在BFS中用二分,先入为主的以为需要先写出来搜索函数然后再去处理二分的事,但是…...
【ARM64 常见汇编指令学习 19.2 -- ARM64 地址加载指令 ADR 详细介绍】
文章目录 地址加载指令 ADRADR 指令使用场景例子注意事项 地址加载指令 ADR ARMv8 架构引入了一系列的改进和扩展,包括对汇编指令集的更新。在这之中,ADR 指令是一个重要的组成部分,它用于计算并加载一个地址到寄存器。 ADR 指令 ADR 指令…...
vscode输出控制台中文显示乱码最有效解决办法
当VSCode的输出控制台中文显示乱码时,一个有效的解决办法是通过设置环境变量来确保编码的正确性。以下是解决方式: 首先,设置环境变量以修正乱码问题: 如果上述方法没有解决乱码问题,请继续以下步骤: 右键…...
springboot + Vue前后端项目(第十五记)
项目实战第十五记 写在前面1.后端接口实现1.1 用户表添加角色字段1.2 角色表增加唯一标识字段1.3 UserDTO1.4 UserServiceImpl1.5 MenuServiceImpl 2. 前端实现2.1 User.vue2.2 动态菜单设计2.2.1 Login.vue2.2.2 Aside.vue 2.3 动态路由设计2.3.1 菜单表新增字段page_path2.3.…...
如何在Windows 11中恢复丢失的快速访问菜单?这里提供解决办法
序言 在电脑的“快速访问”菜单中找不到固定的项目?或者,整个菜单对你来说已经消失了吗?无论哪种方式,你都可以强制你的电脑恢复菜单并显示其中的所有项目。以下是如何在你的Windows 11电脑上做到这一点。 将文件资源管理器设置为打开到主页 当你在文件资源管理器的左侧…...
变声器软件免费版有哪些?国内外12大热门变声器大盘点!(新)
变声软件是一种人工智能AI音频处理工具,允许用户实时修改自己的声音或改变预先录制的音频。这些软件解决方案可提供不同的效果,如改变声音的音调或速度,或将我们的声音转换成其他人或其他东西的声音,如名人、卡通人物、机器人或不…...
计算机网络 —— 数据链路层(无线局域网)
计算机网络 —— 数据链路层(无线局域网) 什么是无线局域网IEEE 802.11主要标准及其特点: 802.11的MAC帧样式 我们来看看无线局域网: 什么是无线局域网 无线局域网(Wireless Local Area Network,简称WLAN…...
SpringBoot图书管理系统【附:资料➕文档】
前言:我是源码分享交流Coding,专注JavaVue领域,专业提供程序设计开发、源码分享、 技术指导讲解、各类项目免费分享,定制和毕业设计服务! 免费获取方式--->>文章末尾处! 项目介绍048: 图…...
shell简介
一、Shell 概念定义 Shell 是用 C 语言编写的程序,是用户使用 Linux 的桥梁,既是命令语言又是程序设计语言。 shell 脚本为 Shell 编写的脚本程序,常说的 shell 通常指 shell 脚本。 包含一系列命令的文本文件,这些命令按照特定…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
