当前位置: 首页 > news >正文

matplotlib 动态显示训练过程中的数据和模型的决策边界

文章目录

  • Github
  • 官网
  • 文档
  • 简介
  • 动态显示训练过程中的数据和模型的决策边界
    • 安装
    • 源码

Github

  • https://github.com/matplotlib/matplotlib

官网

  • https://matplotlib.org/stable/

文档

  • https://matplotlib.org/stable/api/index.html

简介

matplotlib 是 Python 中最常用的绘图库之一,用于创建各种类型的静态、动态和交互式可视化。

动态显示训练过程中的数据和模型的决策边界

在这里插入图片描述

安装

pip install tensorflow==2.13.1
pip install matplotlib==3.7.5
pip install numpy==1.24.3

源码

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap# 生成数据
np.random.seed(0)
num_samples_per_class = 500
negative_samples = np.random.multivariate_normal(mean=[0, 3],cov=[[1, 0.5], [0.5, 1]],size=num_samples_per_class
)
positive_samples = np.random.multivariate_normal(mean=[3, 0],cov=[[1, 0.5], [0.5, 1]],size=num_samples_per_class
)inputs = np.vstack((negative_samples, positive_samples)).astype(np.float32)
targets = np.vstack((np.zeros((num_samples_per_class, 1)), np.ones((num_samples_per_class, 1)))).astype(np.float32)# 将数据分为训练集和测试集
train_size = int(0.8 * len(inputs))
X_train, X_test = inputs[:train_size], inputs[train_size:]
y_train, y_test = targets[:train_size], targets[train_size:]# 构建二分类模型
model = Sequential([# 输入层:输入形状为 (2,)# 第一个隐藏层:包含 4 个节点,激活函数使用 ReLUDense(4, activation='relu', input_shape=(2,)),# 输出层:包含 1 个节点,激活函数使用 Sigmoid(因为是二分类问题)Dense(1, activation='sigmoid')
])# 编译模型
# 指定优化器为 Adam,损失函数为二分类交叉熵,评估指标为准确率
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 准备绘图
fig, ax = plt.subplots()
cmap_light = ListedColormap(['#FFAAAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#0000FF'])# 动态绘制函数
def plot_decision_boundary(epoch, logs):ax.clear()x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))grid = np.c_[xx.ravel(), yy.ravel()]probs = model.predict(grid).reshape(xx.shape)ax.contourf(xx, yy, probs, alpha=0.8, cmap=cmap_light)ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train[:, 0], edgecolor='k', cmap=cmap_bold)ax.set_title(f'Epoch {epoch+1}')plt.draw()plt.pause(0.01)# 自定义回调函数
class PlotCallback(tf.keras.callbacks.Callback):def on_epoch_end(self, epoch, logs=None):plot_decision_boundary(epoch, logs)# 训练模型并动态显示
plot_callback = PlotCallback()
model.fit(X_train, y_train, epochs=50, batch_size=16, callbacks=[plot_callback])# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Loss: {loss}")
print(f"Test Accuracy: {accuracy}")plt.show()

相关文章:

matplotlib 动态显示训练过程中的数据和模型的决策边界

文章目录 Github官网文档简介动态显示训练过程中的数据和模型的决策边界安装源码 Github https://github.com/matplotlib/matplotlib 官网 https://matplotlib.org/stable/ 文档 https://matplotlib.org/stable/api/index.html 简介 matplotlib 是 Python 中最常用的绘图…...

【学术小白成长之路】02三方演化博弈(基于复制动态方程)期望与复制动态方程

从本专栏开始,笔者正式研究演化博弈分析,其中涉及到双方演化博弈分析,三方演化博弈分析,复杂网络博弈分析等等。 先阅读了大量相关的博弈分析的文献,总结了现有的研究常用的研究流程,针对每个流程进行拆解。…...

短剧看剧系统投流版系统搭建,前端uni-app

目录 前言: 一、短剧看剧系统常规款短剧系统和投流版的区别? 二、后端体系 1.管理端: 2.代理投流端 三、功能区别 总结: 前言: 23年上半年共上新微短剧481部,相较于2022年全年上新的454部&#xff0…...

最新的ffmepg.js前端VUE3实现视频、音频裁剪上传功能

package.json "dependencies": {"ffmpeg/ffmpeg": "^0.12.10","ffmpeg/util": "^0.12.1" }vue3组件代码 根据需要更改 <script setup lang"ts"> import { FFmpeg } from ffmpeg/ffmpeg; import { fetchF…...

“Apache Kylin 实战指南:从安装到高级优化的全面教程

Apache Kylin是一个开源的分布式分析引擎,它提供了在Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力,支持超大规模数据的亚秒级查询。以下是Kylin的入门教程,帮助您快速上手并使用这个强大的工具。 1. 安装Kylin Apache Kylin的安装是一个关键步骤,它要求您具备一…...

【iOS】内存泄漏检查及原因分析

目录 为什么要检测内存泄漏&#xff1f;什么是内存泄漏&#xff1f;内存泄漏排查方法1. 使用Zombie Objects2. 静态分析3. 动态分析方法定位修改Leaks界面分析Call Tree的四个选项&#xff1a; 内存泄漏原因分析1. Leaked Memory&#xff1a;应用程序未引用的、不能再次使用或释…...

“深入探讨Java中的对象拷贝:浅拷贝与深拷贝的差异与应用“

前言&#xff1a;在Java编程中&#xff0c;深拷贝&#xff08;Deep Copy&#xff09;与浅拷贝&#xff08;Shallow Copy&#xff09;是两个非常重要的概念。它们涉及到对象在内存中的复制方式&#xff0c;对于理解对象的引用、内存管理以及数据安全都至关重要。 ✨✨✨这里是秋…...

Docker 进入指定容器内部(以Mysql为例)

文章目录 一、启动容器二、查看容器是否启动三、进入容器内部 一、启动容器 这个就不多说了 直接docker run… 二、查看容器是否启动 查看正在运行的容器 docker ps查看所有的容器 docker ps -a结果如下图所示&#xff1a; 三、进入容器内部 通过CONTAINER ID进入到容器…...

计算机网络-数制转换与子网划分

目录 一、了解数制 1、计算机的数制 2、二进制 3、八进制 4、十进制 5、十六进制 二、数制转换 1、二进制转十进制 2、八进制转十进制 3、十六进制转十进制 4、十进制转二进制 5、十进制转八进制 6、十进制转十六进制 三、子网划分 1、IP地址定义 2、IP的两种协…...

【ssh命令】ssh登录远程服务器

命令格式&#xff1a;ssh 用户名主机IP # 使用非默认端口: -p 端口号 ssh changxianrui192.168.100.100 -p 1022 # 使用默认端口 22 ssh changxianrui192.168.100.100 然后输入密码&#xff0c;就可以登录进去了。...

【区块链】truffle测试

配置区块链网络 启动Ganache软件 使用VScode打开项目的wordspace 配置对外访问的RPC接口为7545&#xff0c;配置项目的truffle-config.js实现与新建Workspace的连接。 创建项目 创建一个新的目录 mkdir MetaCoin cd MetaCoin下载metacoin盒子 truffle unbox metacoincontra…...

【AIGC调研系列】chatTTS与GPT-SoVITS的对比优劣势

ChatTTS和GPT-SoVITS都是在文本转语音&#xff08;TTS&#xff09;领域的重要开源项目&#xff0c;但它们各自有不同的优势和劣势。 ChatTTS 优点&#xff1a; 多语言支持&#xff1a;ChatTTS支持中英文&#xff0c;并且能够生成高质量、自然流畅的对话语音[4][10][13]。细粒…...

LLVM Cpu0 新后端10

想好好熟悉一下llvm开发一个新后端都要干什么&#xff0c;于是参考了老师的系列文章&#xff1a; LLVM 后端实践笔记 代码在这里&#xff08;还没来得及准备&#xff0c;先用网盘暂存一下&#xff09;&#xff1a; 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…...

k8s面试题大全,保姆级的攻略哦(二)

目录 三十六、pod的定义中有个command和args参数&#xff0c;这两个参数不会和docker镜像的entrypointc冲突吗&#xff1f; 三十七、标签及标签选择器是什么&#xff0c;如何使用&#xff1f; 三十八、service是如何与pod关联的&#xff1f; 三十九、service的域名解析格式…...

Mysql:通过一张表里的父子级,递归查询并且分组分级

递归函数WITH RECURSIVE语法 WITH RECURSIVE cte_name (column_list) AS (SELECT initial_query_resultUNION [ALL]SELECT recursive_queryFROM cte_nameWHERE condition ) SELECT * FROM cte_name; WITH RECURSIVE 关键字&#xff1a;表示要使用递归查询的方式处理数据。 c…...

数据结构之排序算法

目录 1. 插入排序 1.1.1 直接插入排序代码实现 1.1.2 直接插入排序的特性总结 1.2.1 希尔排序的实现 1.2.2 希尔排序的特性总结 2. 选择排序 2.1.1 选择排序 2.1.2 选择排序特性 2.2.1 堆排序 2.2.2 堆排序特性 3. 交换排序 3.1.1 冒泡排序 3.1.2 冒泡排序的特性 …...

移动安全赋能化工能源行业智慧转型

随着我国能源化工企业的不断发展&#xff0c;化工厂中经常存在火灾爆炸的危险&#xff0c;特别是生产场所&#xff0c;约有80%以上生产场所区域存在爆炸性物质。而目前我国化工危险场所移动通信设备的普及率高&#xff0c;但是对移动通信设备的安全防护却有所忽视&#xff0c;包…...

今天是放假带娃的一天

端午节放假第一天 早上5点半宝宝就咔咔乱叫了&#xff0c;几乎每天都这个点醒&#xff0c;准时的很&#xff0c;估计他是个勤奋的娃吧&#xff0c;要早起锻炼婴语&#xff0c;哈哈 醒来后做饭、洗锅、洗宝宝的衣服、给他吃D3&#xff0c;喂200ml奶粉、给他洗澡、哄睡&#xff0…...

linux Ubuntu安装samba服务器与SSH远程登录

目录 1&#xff0c;下载安装包 2&#xff0c;添加服务器 3&#xff0c;修改服务器配置 3.1 备份配置文件 3.2 修改配置 4&#xff0c;开启samba服务器 5&#xff0c;开关电脑与服务器设置 6&#xff0c; SSH远程登录 1&#xff0c;下载samba服务器安装包 sudo apt in…...

纳什均衡:博弈论中的运作方式、示例以及囚徒困境

文章目录 一、说明二、什么是纳什均衡&#xff1f;2.1 基本概念2.2 关键要点 三、理解纳什均衡四、纳什均衡与主导策略五、纳什均衡的例子六、囚徒困境七、如何原理和应用7.1 博弈论中的纳什均衡是什么&#xff1f;7.2 如何找到纳什均衡&#xff1f;7.3 为什么纳什均衡很重要&a…...

Linux之进程信号详解【上】

&#x1f30e; Linux信号详解 文章目录&#xff1a; Linux信号详解 信号入门 技术应用角度的信号 信号及信号的产生       信号的概念       信号的处理方式 信号的产生方式         键盘产生信号         系统调用产生信号         软件…...

【Spring Cloud】Eureka详细介绍及底层原理解析

目录 底层原理详解 1. 服务注册与发现 2. 心跳机制 3. 服务剔除与自我保护机制 Eureka Server 核心组件 Eureka Client 核心组件 使用场景 结语 Eureka 是 Netflix 开源的一款服务发现框架&#xff0c;用于构建分布式系统中的服务注册与发现。 它包含两个核心组件&…...

【清华大学】《自然语言处理》(刘知远)课程笔记 ——NLP Basics

自然语言处理基础&#xff08;Natural Language Processing Basics, NLP Basics&#xff09; 自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言…...

代码随想录 | Day17 | 二叉树:二叉树的最大深度最小深度

代码随想录 | Day17 | 二叉树&#xff1a;二叉树的最大深度&&最小深度 主要学习内容&#xff1a; 利用前序后序层序求解二叉树深度问题 其中穿插回溯法 104.二叉树的最大深度 104. 二叉树的最大深度 - 力扣&#xff08;LeetCode&#xff09; 递归遍历 后序遍历 …...

【Linux】Socket编程基础

文章目录 字节序字节序转化函数 套接字socket通用结构体通信类型名空间套接字函数socket()&#xff1a;创建套接字bind()函数&#xff1a;绑定服务器套接字与其地址、端口listen()函数&#xff1a;侦听客户连接connect()&#xff1a;连接服务器套接字accept()函数&#xff1a;服…...

关于stm32的软件复位

使用软件复位的目的&#xff1a; 软件复位并不会擦除存储器中的数据&#xff0c;它只是将处理器恢复到复位状态&#xff0c;即中断使能位被清除&#xff0c;系统寄存器被重置&#xff0c;但RAM和Flash存储器中的数据保持不变。 STM32软件复位(基于库文件V3.5) &#xff0c;对…...

规范系统运维:系统性能监控与优化的重要性与实践

在当今这个高度信息化的时代&#xff0c;企业的IT系统运维工作显得尤为关键。其中&#xff0c;系统性能监控和优化是运维工作中不可或缺的一环。本文旨在探讨规范系统运维中系统性能监控与优化的重要性&#xff0c;并分享一些实践经验和策略。 一、系统性能监控与优化的重要性…...

用python编撰一个电脑清理程序

自制一个电脑清理程序&#xff0c;有啥用呢&#xff1f;在电脑不装有清理软件的时候&#xff0c;可以解决自己电脑内存不足的情况。 1、设想需要删除指定文件夹中的临时文件和缓存文件。以下是代码。 import os import shutil def clean_folder(folder_path): for root,…...

2024年【天津市安全员C证】免费试题及天津市安全员C证试题及解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 天津市安全员C证免费试题是安全生产模拟考试一点通生成的&#xff0c;天津市安全员C证证模拟考试题库是根据天津市安全员C证最新版教材汇编出天津市安全员C证仿真模拟考试。2024年【天津市安全员C证】免费试题及天津市…...

【Python数据挖掘实战案例】机器学习LightGBM算法原理、特点、应用---基于鸢尾花iris数据集分类实战

一、引言 1、简要介绍数据挖掘的重要性和应用 在数字化时代&#xff0c;数据已经成为企业和社会决策的重要依据。数据挖掘作为一门交叉学科&#xff0c;结合了统计学、机器学习、数据库技术和可视化等多个领域的知识&#xff0c;旨在从海量数据中提取有价值的信息&#xff0c…...

政府网网站一般谁做的/济南最新消息今天

ylbtech-Arithmetic:Console-算法-求0—7所能组成的奇数个数1.A&#xff0c;Demo(案例)【程序83】题目&#xff1a;求0—7所能组成的奇数个数。1.程序分析&#xff1a; 1.B&#xff0c;Solution(解决方案) 【不是明白是如何构思的】using System;namespace ConsoleApplication1…...

axure 做网站原型图/百度权重网站排名

【问题】IDEA Maven pom.xml 变灰 出现删除线 项目中的pom.xml文件被设置在maven忽略清单中 解决方案 如图 将变灰出现删除线的文件 取消选中 参考资料 https://blog.csdn.net/weixin_45300108/article/details/109597545...

辽宁工程建设信息网站/识图搜索在线 照片识别

独享还是共享&#xff0c;你选择哪一种锁 前言 今天博主将为大家分享独享还是共享&#xff0c;你选择哪一种锁&#xff1f;&#xff08;独享锁/共享锁&#xff09;&#xff0c;不喜勿喷&#xff0c;如有异议欢迎讨论&#xff01; 有一个强大的地基才能写出健壮的程序&#xf…...

动态页网站/网络营销师报考条件

一同事的朋友正在参加笔试&#xff0c;遇到这么一个问题让他帮忙解决&#xff0c;结果同事又找到我帮他搞定。真是感慨&#xff1a;通讯发达在某些方面来说&#xff0c;真不知是不是好事啊&#xff01;题目大致如下所示&#xff0c;一般我们使用ifconfig查看网卡信息&#xff0…...

深圳福田区房价多少钱一平米/北京seo业务员

前言 SQLite数据库由于其简单、灵活、轻量、开源&#xff0c;已经被越来越多的被应用到中小型应用中。甚至有人说&#xff0c;SQLite完全可以用来取代c语言中的文件读写操作。因此我最近编写有关遥感数据处理的程序的时候&#xff0c;也将SQLite引入进来&#xff0c;以提高数据…...

网站前置审批专项/国际婚恋网站排名

环境&#xff1a; 电脑&#xff1a;联想E14 系统&#xff1a;Windows 10 专业版 64位 VMware 16.0 &#xff1a;Ubuntu20.04 问题描述&#xff1a; 如何更新国内源&#xff0c;原因是安装ssh没成功 解决方案&#xff1a; 1.备份原来的源 sudo cp /etc/apt/sources.list…...