量化交易:Miniqmt获取可转债数据和交易python代码
哈喽,大家好,我是木头左!
低风险资产除了国债外,还有可转债,兼容有高收益的股性和低风险的债性,号称“下有保底,上不封顶”。
🔍 可转债:金融市场的双面娇娃
可转债,全称可转换债券,是一种可以在特定条件下转换为发行公司股票的债券。它既有债券的稳定收益特性,又有股票的增长潜力,是投资者进行资产配置的重要选择。
🎯 可转债的优势
- 收益与风险的平衡:既有固定收益,又有转股后的增值潜力。
- 市场适应性强:在不同的市场环境下,可转债都能展现出其独特的价值。
- 流动性好:可转债通常在交易所上市,流动性较高。
🛠️ miniQMT:量化交易的瑞士军刀
miniQMT可以不依赖QMT客户端,可以在vscode中直接运行,它提供了丰富的数据接口和交易策略模板,使得用户可以轻松地构建和测试自己的量化交易策略。
前面已经安装好QMT,参考QMT量化入门 ,在安装目录下有userdata_mini,这就是我们后面要用的Miniqmt的安装目录。

直接下载的可以用,最好是使用最新版本的,可从官网下载:https://dict.thinktrader.net/nativeApi/download_xtquant.html?id=7zqjlm

直接覆盖即可,不可以通过pip install的方式安装。
💻 Python代码
下面,我将展示如何使用Python和miniQMT来获取可转债数据。
🔬 获取可转债数据
获取行情主要是通过xtdata实现。
xtdata.download_history_data2(stock_list,period="1d",start_time="20240224") #批量下载
kline_data=xtdata.get_market_data(field_list=['time','open','high','low','close','volume','amount'],
print(res)
📊 连接客户端
如果要交易,本来还是要启miniQMT客户端,并配置资金帐户和安装目录。

否则会报错:

# coding:gbk
# @author : 木头左
# @date : 2024/06/03 22:18:26
# @description :
from xtquant import xtdata
import randomfrom xtquant.xttype import StockAccount
from xtquant.xttrader import XtQuantTrader
from xtquant import xtconstant# miniQMT安装路径
mini_qmt_path = r'E:\programData\qmt\userdata_mini'
# QMT账号
account = 'xx'
# 创建session_id
session_id = int(random.randint(100000, 999999))
# 创建交易对象
xt_trader = XtQuantTrader(mini_qmt_path, session_id)
# 启动交易对象
xt_trader.start()
# 连接客户端
connect_result = xt_trader.connect()
🚀 执行交易
最后,我们将委托提交客户端。
if connect_result == 0:print('连接成功')
# 创建账号对象
acc = StockAccount(account)
# 订阅账号
xt_trader.subscribe(acc)
# 下单
res = xt_trader.order_stock(acc, stock_code=stock_code, order_type=xtconstant.STOCK_BUY, order_volume=100, price_type=xtconstant.FIX_PRICE, price=7.44)
print(res)
希望这篇文章能够激发你对量化交易的兴趣。记得点赞、分享和关注哦!👍🔄👀
相关文章:
量化交易:Miniqmt获取可转债数据和交易python代码
哈喽,大家好,我是木头左! 低风险资产除了国债外,还有可转债,兼容有高收益的股性和低风险的债性,号称“下有保底,上不封顶”。 🔍 可转债:金融市场的双面娇娃 可转债&am…...
测试开发之自动化篇 —— 使用Selenium IDE录制脚本!
今天,我们开始介绍基于开源Selenium工具的Web网站自动化测试。 Selenium包含了3大组件,分别为:1. Selenium IDE 基于Chrome和Firefox扩展的集成开发环境,可以录制、回放和导出不同语言的测试脚本。 2. WebDriver 包括一组为不同…...
Django 外键关联数据
在设计数据库的时候,是得需要通过外键的形式将各个表进行连接。 原先的表是这样的 要想更改成这样: 下面是操作步骤: 有两张表是关联的 # 在 models.py 里创建class Department(models.Model):"""部门表""&quo…...
开源与新质生产力
在这个信息技术迅猛发展的时代,全球范围内的产业都在经历着深刻的变革。在这样的背景下,“新质生产力”的概念引起了广泛的讨论。无论是已经成为或正努力转型成为新质生产力的企业,都在寻求新的增长动力和竞争优势。作为一名长期从事开源领域…...
如何将 Windows图片查看器的背景颜色改成浅色(灰白色)?
现在大家基本都在使用Win10系统,我们在双击查看图片时,系统默认使用系统自带的图片(照片)查看器去打开图片。图片查看器的背景色默认是黑色的,如下所示:(因为大家可能会遇到同样的问题ÿ…...
k8s-pod参数详解
目录 概述创建Pod编写一个简单的Pod添加常用参数为Pod的容器分配资源网络相关Pod健康检查启动探针存活探针就绪探针 作用整个Pod参数配置创建docker-registry 卷挂载 结束 概述 k8s中的pod参数详解。官方文档 版本 k8s 1.27.x 、busybox:stable-musl、nginx:stable-alpine3…...
一些计算机网络面试题
TCP建立连接和关闭连接的流程?每个流程的环节? TCP是在传输层的协议,建立的是可靠传输 TCP在传输数据前建立连接是采用三次握手,关闭连接是四次挥手 三次握手:因为目前网络通讯是全双工的,那我假设浏览器…...
transformer - 注意力机制
Transformer 的注意力机制 Transformer 是一种用于自然语言处理任务的模型架构,依赖于注意力机制来实现高效的序列建模。注意力机制允许模型在处理一个位置的表示时,考虑输入序列中所有其他位置的信息,而不仅仅是前面的几个位置。这种机制能…...
三端植物大战僵尸杂交版来了
Hi,好久不见,最近植物大战僵尸杂交版蛮火的 那今天苏音整理给大家三端的植物大战僵尸杂交版包括【苹果端、电脑端、安卓端】 想要下载的直接划到最下方即可下载。 植物大战僵尸,作为一款古老的单机游戏,近期随着B站一位UP主潜艇…...
np.hstack()和np.vstack()函数解释
np.hstack()和np.vstack()函数解释 文章目录 1,np.hstack()1.1,代码1.2,结果 2,np.vstack()2.1,代码2.2,结果 3,np.hstack()和np.vstack()3.1,代码3.2,结果 1,…...
【Linux】进程5——进程优先级
1.进程优先级 1.1.什么是进程优先级 cpu资源分配的先后顺序,就是指进程的优先权(priority)。优先权高的进程有优先执行权利。配置进程优先权对多任务环境的linux很有用,可以改善系统性能。还可以把进程运行到指定的CPU上&#x…...
CNN简介与实现
CNN简介与实现 导语整体结构卷积层卷积填充步幅三维卷积立体化批处理 实现 池化层特点实现 CNN实现可视化总结参考文献 导语 CNN全称卷积神经网络,可谓声名远扬,被用于生活中的各个领域,也是最好理解的神经网络结构之一。 整体结构 相较于…...
【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构
目录 一、引言 二、自动模型类(AutoModel) 2.1 概述 2.2 Model Head(模型头) 2.3 代码示例 三、总结 一、引言 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预…...
Hadoop yixing(移行),新增表字段,删除表字段,修改存储格式
Hadoop yixing(移行),新增表字段,删除表字段,修改存储格式 一、hadoop中修改存储格式,比如从 textfile 转化为 orc 格式,表中的数据的组织形式要重新改变,就要将重新创建新格式的表将原来的数据按照新的格…...
使用汇编和proteus实现仿真数码管显示电路
proteus介绍: proteus是一个十分便捷的用于电路仿真的软件,可以用于实现电路的设计、仿真、调试等。并且可以在对应的代码编辑区域,使用代码实现电路功能的仿真。 汇编语言介绍: 百度百科介绍如下: 汇编语言是培养…...
【Unity】官方文档学习-光照系统
目录 1 前言 2 光照介绍 2.1 直接光与间接光 2.2 实时光照与烘焙光照 2.3 全局光照 3 光源 3.1 Directional Light 3.1.1 Color 3.1.2 Mode 3.1.3 Intensity 3.1.4 Indirect Multiplier 3.1.5 Shadow Type 3.1.6 Baked Shadow Angle 3.1.7 Realtime Shadows 3.1…...
1731. 每位经理的下属员工数量
1731. 每位经理的下属员工数量 题目链接:1731. 每位经理的下属员工数量 代码如下: # Write your MySQL query statement below select a.employee_id as employee_id,a.name as name,count(b.employee_id) as reports_count,round(avg(b.age),0) as av…...
特征筛选LASSO回归封装好的代码、数据集和结果
Gitee仓库地址:特征筛选LASSO回归封装好的代码、数据集和结果 README LassoFeatureSelector_main 这个是主函数文件,在实例化LassoFeatureSelector类时,需要传入下面这些参数: input_train_data_path:输入训练集的路…...
Autosar 通讯栈配置-手动配置PDU及Signal-基于ETAS软件
文章目录 前言System配置ISignalSystem SignalPduFrameISignal到System Signal的mapSystem Signal到Pdu的mapPdu到Frame的mapSignal配置Can配置CanHwFilterEcuC配置PduR配置CanIf配置CanIfInitCfgCanIfRxPduCfgCom配置ComIPduComISignalSWC配置Data mappingRTE接口Com配置补充总…...
Web前端工资调整:深入剖析与全面解读
Web前端工资调整:深入剖析与全面解读 在快速发展的互联网行业中,Web前端技术日新月异,而与之紧密相关的工资调整也成为了业内热议的话题。本文将从四个方面、五个方面、六个方面和七个方面,深入剖析Web前端工资调整的原因、趋势、…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
