当前位置: 首页 > news >正文

揭开FFT时域加窗的奥秘

FFT – Spectral Leakage

假设用于ADC输出数据分析的采样点数为N,而采样率为Fs,那我们就知道,这种情况下的FFT频谱分辨率为δf,那么δf=Fs/N。如果此时我们给ADC输入一个待测量的单频Fin,如果此时Fin除以δf不是整数,就会产生频率泄露。要尽可能保证测得的FFT不会产生频谱泄露,有两种方式进行处理,相干采样和时域加窗

(1)相干采样

假设M是我们需要采样的输入信号的周期数,那么M/Fin=N/Fs,也就是两个时间长度是一致的,也就是Fin/ Fs=M/N,这个比值要能够被表达成为有理数(也就是整数或者分数)N必须是2的幂数(这是从蝶形运算的角度考虑的)。MN还必须要互为质数(这样可以避免重复采样相同位置的,重复采样周期信号相同的位置点不会获得额外的信息,因此不推荐M非素数(素数,除了1和它本身以外不再有其他因数的自然数))。如果选择了M/N为非互质时,将导致信号周期性的量化,以及仅有少量的量化步进被测试。量化周期性的重复,建立了一个线谱,它是一个令人费解的实频率线(如下图2所示在谐波镜像之下的红线,这是由ADC的非线性导致的,而黑色痕迹则是因为量化周期的重复性导致的,也就是M/N为非互质导致的,图3是采用相干采样得到的结果

从相干采样的描述来看,相干采样的输入信号Fin和采样频率Fs必须是同步信号。另外相干采样可以确保信号功率仅在一个FFT bin(也就是频谱分辨率)之中。

图1 想干采样定理:
在这里插入图片描述

图2 重复相同位置采样导致的谐波痕线抬升:在这里插入图片描述

图3 相干采样改善还原了真实的非线性特性:
在这里插入图片描述

(2)时域加窗

如果采样的波形是非连续的,也就是采集的样本不是信号的整数倍周期,那么就需要消除这种现象,从而减小FFT的频谱泄露(注意不是完全改善),TI的官方文档为我们展示了这一现象,如下图3所示,对信号进行了时域加窗,加窗之后频谱泄露有所减小

图4 非周期采样频谱泄露展示:
在这里插入图片描述

很明显No window(矩形窗)的旁瓣非常高,也就意味着,它的泄露抑制的不是很好。但是频率分辨率准确,幅值精度低。

  • 不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的截短产生了能量泄漏,而用 FFT 算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。(矩形窗 主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度 最低,但幅值识别精度最高)
  • Hanning(汉宁窗)是使用最广泛的一种窗函数,除此之外还有,Hamming(海明窗),Flat-top 窗和 Balckman-Harris 窗,矩形窗产生最窄的谱线,加 Flat-top 窗谱线最宽。旁瓣的影响和精确频率分辨率 有时候是不可兼得的。(矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;Flat-top 窗主瓣 宽,旁瓣小,频率识别精度最低,但幅值识别精度最高)

图5 TI官方的不同窗函数的频谱特性:
在这里插入图片描述

图6 不同应用使用的窗函数:
在这里插入图片描述

  • Processing loss(dB),也叫做相干功率增益,对一个信号进行加窗操作之后将会减少信号在时域上的幅值,尤其是在窗函数的左右边界,这种幅度的减小会引入幅度误差,每个窗函数的这种处理损失不太一样,TI已经列于下表之中,矩形窗不存在损失

  • Scalloping loss(dB),由于FFT变换的结果是离散的,那么信号的频率有可能会落在两个FFT bin之间,这样原本的功率就会被分散到两个bin上,从而相对于原先的功率就会产生损失,这就叫做栅栏损失

在这里插入图片描述
在这里插入图片描述

图7 不同窗函数使用的处理误差:
在这里插入图片描述

图8 不同窗函数的形状:
在这里插入图片描述

TIADC分析软件,内部已经对加窗处理损失进行修正。

大家可自行使用FFT分析软件分析一下非整周期采样使用各种窗口的结果,加深理解Highest side lobe level、Processing loss、Scalloping loss以及Half main lobe width。应用时域加窗技术会影响频谱分辨率

相关文章:

揭开FFT时域加窗的奥秘

FFT – Spectral Leakage 假设用于ADC输出数据分析的采样点数为N,而采样率为Fs,那我们就知道,这种情况下的FFT频谱分辨率为δf,那么δfFs/N。如果此时我们给ADC输入一个待测量的单频Fin,如果此时Fin除以δf不是整数&a…...

【AI基础】第二步:安装AI运行环境

开局一张图: ​ 接下来按照从下往上的顺序来安装部署。 规则1 注意每个层级的安装版本,上层的版本由下层版本决定 比如CUDA的版本,需要看显卡安装了什么版本的驱动,然后CUDA的版本不能高于这个驱动的版本。 这个比较好理解&…...

【MySQL】聊聊唯一索引是如何加锁的

首先我们要明确,加锁的对象是索引,加锁的基本单位是next-key lock,由记录锁和间隙锁组成。next-key是前开后闭区间,间隙锁是前开后开区间。根据不同的查询条件next-key 可能会退化成记录锁或间隙锁。 在能使用记录锁或者间隙锁就…...

k8s-CCE使用node节点使用VIP--hostNetworkhostPort

CCE使用node节点使用VIP 背景:想在节点上使用VIP,将nodeport服务做到高可用。启动VIP后发现访问失败 部署 ! Configuration File for keepalived global_defs { router_id master-node }vrrp_instance VI_1 {state BACKUPinterface eth0mcast_src_ip 10.1.0.60virtual_rou…...

18、关于优化中央企业资产评估管理有关事项的通知

一、加强重大资产评估项目管理 (一)中央企业应当对资产评估项目实施分类管理,综合考虑评估目的、评估标的资产规模、评估标的特点等因素,合理确定本集团重大资产评估项目划分标准,原则上,企业对外并购股权项目应纳入重大资产评估项目。中央企业应当研究制定重大资产评估…...

AI大模型日报#0610:港大等1bit大模型“解决AI能源需求”、谷歌开源TimesFM时序预测模型

导读:AI大模型日报,爬虫LLM自动生成,一文览尽每日AI大模型要点资讯!目前采用“文心一言”(ERNIE 4.0)、“零一万物”(Yi-Large)生成了今日要点以及每条资讯的摘要。欢迎阅读&#xf…...

速盾:图片cdn加速 免费

随着互联网的快速发展,图片在网页设计和内容传播中起着重要的作用。然而,随着网站访问量的增加和图片文件大小的增加,图片加载速度可能会成为一个问题。为了解决这个问题,许多网站使用图片CDN加速服务。 CDN(Content …...

贪心算法例子

贪心算法概述 贪心算法是一种在每一步选择中都做出局部最优选择的算法,以期望通过一系列局部最优选择达到全局最优。贪心算法在许多优化问题中表现良好,特别是在某些特定类型的问题中能够保证找到最优解。 活动选择问题(Activity Selection Problem)背包问题(贪心解法)霍…...

vivado HW_ILA_DATA、HW_PROBE

HW_ILA_DATA 描述 硬件ILA数据对象是ILA调试核心上捕获的数据的存储库 编程到当前硬件设备上。upload_hw_ila_data命令 在从ila调试移动捕获的数据的过程中创建hw_ila_data对象 核心,hw_ila,在物理FPGA上,hw_device。 read_hw_ila_data命令还…...

refault distance算法的一点理解

这个算法看了好几次了,都没太理解,今天记录一下,加深一下印象。 引用某个博客对这个算法的介绍 一次访问page cache称为fault,第二次访问该页面称为refault。page cache页面第一次被踢出LRU链表并回收(eviction)的时刻称为E&#…...

软件安全技术【太原理工大学】

没有划重点,只说了一句课后题和实验中的内容都可能会出。 2022考试题型:选择20个20分,填空10个10分,名词解释4个20分,简答6个30分,分析与论述2个20分,没找到历年题。 如此看来,这门考…...

异常(Exception)

异常是什么 异常就是程序在进行时的不正常行为,就像之前数组时会遇到空指针异常(NullPointerException),数组越界异常(ArrayIndexOutOfBoundsException)等等。 在java中异常由类来表示。 异常的分类 异常…...

一文者懂LLaMA 2(原理、模型、训练)

引言 LLaMA(Large Language Model Meta AI)是Meta(前身为Facebook)开发的自然语言处理模型家族之一,LLaMA 2作为其最新版本,展示了在语言理解和生成方面的显著进步。本文将详细解读LLaMA 2的基本原理、模型…...

MySQL 存储函数及调用

1.mysql 存储函数及调用 在MySQL中,存储函数(Stored Function)是一种在数据库中定义的特殊类型的函数,它可以从一个或多个参数返回一个值。存储函数在数据库层面上封装了复杂的SQL逻辑,使得在应用程序中调用时更加简单…...

设计模式七大原则-单一职责原则SingleResponsibility

七大原则是在设计“设计模式”的时候需要用到的原则,它们的存在是为了保证设计模式达到以下几种目的: 1.代码重用性 2.可读性 3.可拓展性 4.可靠性(增加新的功能后,对原来的功能没有影响) 5.使程序呈现高内聚、低耦合的…...

msfconsole利用Windows server2008cve-2019-0708漏洞入侵

一、环境搭建 Windows系列cve-2019-0708漏洞存在于Windows系统的Remote Desktop Services(远程桌面服务)(端口3389)中,未经身份验证的攻击者可以通过发送特殊构造的数据包触发漏洞,可能导致远程无需用户验…...

Reinforcement Learning学习(三)

前言 最近在学习Mujoco环境,学习了一些官方的Tutorials以及开源的Demo,对SB3库的强化学习标准库有了一定的了解,尝试搭建了自己的环境,基于UR5E机械臂,进行了一个避障的任务,同时尝试接入了图像大模型API,做了一些有趣的应用,参考资料如下: https://mujoco.readthedo…...

hw meta10 adb back up DCIM

1. centos install adb 2. HW enable devlepment mode & enalbe adb debug 3. add shell root/zt/adb-sync python3 ./adb-sync --reverse /sdcard/DCIM/Camera /root/zt/meta10...

Unity2D游戏制作入门 | 12(之人物受伤和死亡的逻辑动画)

上期链接:Unity2D游戏制作入门 | 11(之人物属性及伤害计算)-CSDN博客 上期我们聊到了人物的自身属性和受伤时的计算,我们先给人物和野猪挂上属性和攻击属性的代码,然后通过触发器触发受伤的事件。物体(人物也好敌人也行&#xff…...

从河流到空气,BL340工控机助力全面环保监测网络构建

在环保监测领域,智能化、高效率的监测手段正逐步成为守护绿水青山的新常态。其中,ARMxy工业计算机BL340凭借其强大的处理能力、高度的灵活性以及广泛的兼容性,在水质监测站、空气质量检测、噪音污染监控等多个环保应用场景中脱颖而出&#xf…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: ​onCreate()​​ ​调用时机​:Activity 首次创建时调用。​…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...