当前位置: 首页 > news >正文

【AI大模型】Prompt Engineering

目录

什么是提示工程(Prompt Engineering)

Prompt 调优

Prompt 的典型构成

「定义角色」为什么有效?

防止 Prompt 攻击

攻击方式 1:著名的「奶奶漏洞」

攻击方式 2:Prompt 注入

 防范措施 1:Prompt 注入分类器

防范措施 2:直接在输入中防御

高质量 prompt 技巧总结


什么是提示工程(Prompt Engineering)

提示工程也叫「指令工程」。

  • Prompt 就是你发给大模型的指令,比如「讲个笑话」、「用 Python 编个贪吃蛇游戏」、「给男/女朋友写封情书」等
  • 貌似简单,但意义非凡
    • 「Prompt」 是 AGI 时代的「编程语言」
    • 「Prompt 工程」是 AGI 时代的「软件工程」
    • 「提示工程师」是 AGI 时代的「程序员」
  • 学会提示工程,就像学用鼠标、键盘一样,是 AGI 时代的基本技能
  • 提示工程「门槛低,天花板高」,所以有人戏称 prompt 为「咒语」
  • 但专门的「提示工程师」不会长久,因为每个人都要会「提示工程」,AI 的进化也会让提示工程越来越简单

Prompt 调优

找到好的 prompt 是个持续迭代的过程,需要不断调优。

如果知道训练数据是怎样的,参考训练数据来构造 prompt 是最好的。「当人看」类比:

  1. 你知道 ta 爱读红楼梦,就和 ta 聊红楼梦
  2. 你知道 ta 十年老阿里,就多说阿里黑话
  3. 你知道 ta 是日漫迷,就夸 ta 卡哇伊

不知道训练数据怎么办?

  1. 看 Ta 是否主动告诉你。例如:
    1. OpenAI GPT 对 Markdown 格式友好
    2. OpenAI 官方出了 Prompt Engineering 教程,并提供了一些示例
    3. Claude 对 XML 友好。
  2. 只能不断试了。有时一字之差,对生成概率的影响都可能是很大的,也可能毫无影响……

「试」是常用方法,确实有运气因素,所以「门槛低、 天花板高」。

高质量 prompt 核心要点:具体、丰富、少歧义

Prompt 的典型构成

不要固守「模版」。模版的价值是提醒我们别漏掉什么,而不是必须遵守模版才行。

  • 角色:给 AI 定义一个最匹配任务的角色,比如:「你是一位软件工程师」「你是一位小学老师」
  • 指示:对任务进行描述
  • 上下文:给出与任务相关的其它背景信息(尤其在多轮交互中)
  • 例子:必要时给出举例,学术中称为 one-shot learning, few-shot learning 或 in-context learning;实践证明其对输出正确性有很大帮助
  • 输入:任务的输入信息;在提示词中明确的标识出输入
  • 输出:输出的格式描述,以便后继模块自动解析模型的输出结果,比如(JSON、XML)

「定义角色」为什么有效?

  • 模型训练者并没想到过会这样,完全是大家「把 AI 当人看」玩出的一个用法
  • 实在传得太广,导致现在的大模型训练数据里充满了角色定义,所以更有效了
  • 有一篇论文证实的现象,可以说明为啥「你是一个 xxx」特别有效

防止 Prompt 攻击

攻击方式 1:著名的「奶奶漏洞」

      正情况下大模型会拒绝回答一些危险的问题,但是用户在进行prompt 的时候,可以让大模型不经意的回答了有害问题。

攻击方式 2:Prompt 注入

     用户在进行prompt 的时候,向大模型提出更换大模型已定义的角色,让他回答用户自身需要的一些问题。

 防范措施 1:Prompt 注入分类器

    就像安检一样,在提交Prompt前,让大模型先判断这个Prompt是否有害。

防范措施 2:直接在输入中防御

当人看:每次默念动作要领。在Prompt前面添加必要的提示要求。

总结:目前并没有 100% 好用的防范方法。 

高质量 prompt 技巧总结

  1.  把大模型当“”人”,看,不同的大模型有不同的沟通偏好。如:chatgpt对 Markdown 格式的文本识别度很高。 Claude 对 XML 友好。
  2.  发出的指令要尽量具体、丰富、少歧义。
  3.  定义角色。现有的大模型里的很多数据都是基于角色定义训练的。
  4.  大模型对prompt的 开始和结束词语更敏感。将重要的事情在末尾描述三遍是一个不错的做法。
  5.  必要的时候举例描述或直接给出模板,能提升大模型回答的准确性。
  6.  思维链模型:将一个复杂的问题拆分成多个小问题,一步步 提问 比 直接将这个复杂的问题丢给 大模型,要可靠的多。
  7.  自洽性: 同一个问题,换个角度多问几次,取出现次数最高的结果。
  8.  注意做好prompt攻击防范。

OpenAI API 的几个重要参数

其它大模型的 API 基本都是参考 OpenAI,只有细节上稍有不同。

OpenAI 提供了两类 API:

  1. Completion API:续写文本,多用于补全场景。https://platform.openai.com/docs/api-reference/completions/create
  2. Chat API:多轮对话,但可以用对话逻辑完成任何任务,包括续写文本。https://platform.openai.com/docs/api-reference/chat/create

说明:

  1. Chat 是主流,有的大模型只提供 Chat
  2. 背后的模型可以认为是一样的,但也不完全一样
  3. Chat 模型是纯生成式模型做指令微调之后的结果,更多才多艺,更听话
def get_chat_completion(session, user_prompt, model="gpt-3.5-turbo"):_session = copy.deepcopy(session)_session.append({"role": "user", "content": user_prompt})response = client.chat.completions.create(model=model,messages=_session,# 以下默认值都是官方默认值temperature=1,          # 生成结果的多样性。取值 0~2 之间,越大越发散,越小越收敛seed=None,              # 随机数种子。指定具体值后,temperature 为 0 时,每次生成的结果都一样stream=False,           # 数据流模式,一个字一个字地接收response_format={"type": "text"},  # 返回结果的格式,json_object 或 texttop_p=1,                # 随机采样时,只考虑概率前百分之多少的 token。不建议和 temperature 一起使用n=1,                    # 一次返回 n 条结果max_tokens=100,         # 每条结果最多几个 token(超过截断)presence_penalty=0,     # 对出现过的 token 的概率进行降权frequency_penalty=0,    # 对出现过的 token 根据其出现过的频次,对其的概率进行降权logit_bias={},          # 对指定 token 的采样概率手工加/降权,不常用)msg = response.choices[0].message.contentreturn msg

相关文章:

【AI大模型】Prompt Engineering

目录 什么是提示工程(Prompt Engineering) Prompt 调优 Prompt 的典型构成 「定义角色」为什么有效? 防止 Prompt 攻击 攻击方式 1:著名的「奶奶漏洞」 攻击方式 2:Prompt 注入 防范措施 1:Prompt 注…...

centos安装vscode的教程

centos安装vscode的教程 步骤一:打开vscode官网找到历史版本 历史版本链接 步骤二:找到文件下载的位置 在命令行中输入(稍等片刻即可打开): /usr/share/code/bin/code关闭vscode后,可在应用程序----编程…...

面试题------>MySQL!!!

一、连接查询 ①:左连接left join (小表在左,大表在右) ②:右连接right join(小表在右,大表在左) 二、聚合函数 SQL 中提供的聚合函数可以用来统计、求和、求最值等等 COUNT&…...

英伟达:史上最牛一笔天使投资

200万美元的天使投资,让刚成立就面临倒闭风险的英伟达由危转安,并由此缔造了一个2.8万亿美元的市值神话。 这是全球风投史上浓墨重彩的一笔。 前不久,黄仁勋在母校斯坦福大学的演讲中,提到了人生中的第一笔融资——1993年&#x…...

PDF分页处理:技术与实践

引言 在数字化办公和学习中,PDF文件因其便携性和格式稳定性而广受欢迎。然而,处理大型PDF文件时,我们经常需要将其拆分成单独的页面,以便于管理和分享。本文将探讨如何使用Python编程语言和一些流行的库来实现PDF文件的分页处理。…...

数据可视化——pyecharts库绘图

目录 官方文档 使用说明: 点击基本图表 可以点击你想要的图表 安装: 一些例图: 柱状图: 效果: 折线图: 效果: 环形图: 效果: 南丁格尔图(玫瑰图&am…...

Python的return和yield,哪个是你的菜?

目录 1、return基础介绍 📚 1.1 return用途:数据返回 1.2 return执行:函数终止 1.3 return深入:无返回值情况 2、yield核心概念 🍇 2.1 yield与迭代器 2.2 生成器函数构建 2.3 yield的暂停与续行特性 3、retur…...

持续总结中!2024年面试必问 20 道分布式、微服务面试题(七)

上一篇地址:持续总结中!2024年面试必问 20 道分布式、微服务面试题(六)-CSDN博客 十三、请解释什么是服务网格(Service Mesh)? 服务网格(Service Mesh)是一种用于处理服…...

AJAX 跨域

这里写目录标题 同源策略JSONPJSONP 是怎么工作的JSONP 的使用原生JSONP实践CORS 同源策略 同源: 协议、域名、端口号 必须完全相同、 当然网页的URL和AJAX请求的目标资源的URL两者之间的协议、域名、端口号必须完全相同。 AJAX是默认遵循同源策略的,不…...

3 数据类型、运算符与表达式-3.1 C语言的数据类型和3.2 常量与变量

数据类型 基本类型 整型字符型实型(浮点型) 单精度型双精度型 枚举类型 构造类型 数组类型结构体类型共用体类型 指针类型空类型 #include <stdio.h> #include <string.h> #include <stdbool.h> // 包含布尔类型定义 // 常量和符号常量 #define PRICE 30//…...

NSSCTF-Web题目5

目录 [SWPUCTF 2021 新生赛]error 1、题目 2、知识点 3、思路 [LitCTF 2023]作业管理系统 1、题目 2、知识点 3、思路 [HUBUCTF 2022 新生赛]checkin 1、题目 2、知识点 3、思路 [SWPUCTF 2021 新生赛]error 1、题目 2、知识点 数据库注入、报错注入 3、思路 首先…...

cnvd_2015_07557-redis未授权访问rce漏洞复现-vulfocus复现

1.复现环境与工具 环境是在vulfocus上面 工具&#xff1a;GitHub - vulhub/redis-rogue-getshell: redis 4.x/5.x master/slave getshell module 参考攻击使用方式与原理&#xff1a;https://vulhub.org/#/environments/redis/4-unacc/ 2.复现 需要一个外网的服务器做&…...

免费,C++蓝桥杯等级考试真题--第7级(含答案解析和代码)

C蓝桥杯等级考试真题--第7级 答案&#xff1a;D 解析&#xff1a;步骤如下&#xff1a; 首先&#xff0c;--a 操作会使 a 的值减1&#xff0c;因此 a 变为 3。判断 a > b 即 3 > 3&#xff0c;此时表达式为假&#xff0c;因为 --a 后 a 并不大于 b。因此&#xff0c;程…...

python为什么要字符串格式化

Python2.6 开始&#xff0c;新增了一种格式化字符串的函数 str.format()&#xff0c;它增强了字符串格式化的功能。相对于老版的%格式方法&#xff0c;它有很多优点。 1.在%方法中%s只能替代字符串类型&#xff0c;而在format中不需要理会数据类型&#xff1b; 2.单个参数可以…...

go语言后端开发学习(三)——基于validator包实现接口校验

前言 在我们开发模块的时候,有一个问题是我们必须要去考虑的&#xff0c;它就是如何进行入参校验&#xff0c;在gin框架的博客中我就介绍过一些常见的参数校验&#xff0c;大家可以参考gin框架学习笔记(四) ——参数绑定与参数验证&#xff0c;而这个其实也不是能够完全应对我…...

系统架构设计师【补充知识】: 应用数学 (核心总结)

一、 图论之最小生成树 (1)定义: 在连通的带权图的所有生成树中&#xff0c;权值和最小的那棵生成树(包含图中所有顶点的树)&#xff0c;称作最小生成树。 (2)针对问题: 带权图的最短路径问题。 (3)最小生成树的解法有普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法&#xff0c;我…...

【ArcGIS微课1000例】0118:一文讲清楚tif(geotiff)栅格数据格式

文章目录 一、Tiff概述二、GeoTiff概述1. ovr文件2. tfw文件3. xml文件4. dbf文件一、Tiff概述 TIFF(Tagged Image File Format)是一种常见的图像文件格式,它被广泛用于存储和传输各种类型的图像数据。下面是对TIFF格式数据的介绍: 图像存储:TIFF格式可以存储多通道的位…...

调用第三方API --------------Python篇

在项目开发过程中&#xff0c;可能需要调用第三方的一些API或者公司提供的数据接口来得到相应的数据或者实现对应的功能。 因此API的调用和数据接口的访问都是做数据分析的一个常用操作&#xff0c;如何快速实现API和数据接口的调用&#xff0c;网上一般提供很多语言版本&#…...

Web自动化测试-掌握selenium工具用法,使用WebDriver测试Chrome/FireFox网页(Java

目录 一、在Eclipse中构建Maven项目 1.全局配置Maven 2.配置JDK路径 3.创建Maven项目 4.引入selenium-java依赖 二、Chrome自动化脚本编写 1.创建一个ChromeTest类 2.测试ChromeDriver 3.下载chromedriver驱动 4.在脚本中通过System.setProperty方法指定chromedriver的…...

maven多模块项目搭建

文章目录 创建方式创建父项目创建子模块 目录结构示例父模块模块A模块B&#xff08;并在模块B中引入模块A&#xff09; 注意事项 创建方式 创建父项目 #创建文件夹后&#xff0c;进入目录&#xff0c;执行以下命令 PS D:\demo> mvn archetype:generate #将输出很多模板&am…...

PostgreSQL的视图pg_tables

PostgreSQL的视图pg_tables pg_tables 是 PostgreSQL 中的一个系统视图&#xff0c;用于显示当前数据库中所有用户定义的表的信息。这个视图提供了关于表的名称、所属模式&#xff08;schema&#xff09;、所有者以及表类型等详细信息。 pg_tables 视图的主要列 列名类型描述…...

Stable diffusion采样器详解

在我们使用SD web UI的过程中&#xff0c;有很多采样器可以选择&#xff0c;那么什么是采样器&#xff1f;它们是如何工作的&#xff1f;它们之间有什么区别&#xff1f;你应该使用哪一个&#xff1f;这篇文章将会给你想要的答案。 什么是采样&#xff1f; Stable Diffusion模…...

为什么要进行渗透测试?

渗透测试的重要性 渗透测试是一种安全评估技术&#xff0c;旨在模拟黑客攻击&#xff0c;发现和利用系统漏洞&#xff0c;以评估企业信息系统的安全性。以下是进行渗透测试的几个主要原因&#xff1a; 1.发现潜在的漏洞和安全风险&#xff1a;渗透测试可以模拟真实的攻击行为…...

后方碰撞预警系统技术规范(简化版)

后方碰撞预警系统技术规范(简化版) 1 系统概述2 预警区域3 预警目标4 功能需求功能条件5 显示需求6 指标需求1 系统概述 后方碰撞预警系统RCW(Rear Collision Warning)是在后方车辆即将与自车发生碰撞之前,激活危险警告灯以较高频率闪烁,从而吸引后方驾驶员的注意力,避免…...

Position定位

Position定位 CSS中position属性是比较常用的元素定位方案&#xff0c;position常用的取值有static、relative、absolute、fixed、sticky、inherit。 static static属性是HTML元素的默认值&#xff0c;即没有定位&#xff0c;遵循正常的文档流对象&#xff0c;对于top、bott…...

npm install 的原理

1. 执行命令发生了什么 &#xff1f; 执行命令后&#xff0c;会将安装相关的依赖&#xff0c;依赖会存放在根目录的node_modules下&#xff0c;默认采用扁平化的方式安装&#xff0c;排序规则为&#xff1a;bin文件夹为第一个&#xff0c;然后是开头系列的文件夹&#xff0c;后…...

基于I2C协议的OLED显示(利用U82G库)

目录 一、I2C协议 1、了解I2C协议的基本原理和时序协议 基本原理 时序协议 2、掌握0.96寸OLED屏的工作原理&#xff0c;汉字点阵显示原理 OLED 工作原理 汉字点阵显示原理 3、掌握开源GUI库U82G在stm32上的移植编译方法&#xff0c;以及图形界面可视化技术。 二、具体…...

【文末附gpt升级秘笈】探索AGI之路:穿越大模型的冰与火,谱写未来技术的乐章

探索AGI之路&#xff1a;穿越大模型的冰与火&#xff0c;谱写未来技术的乐章 摘要 随着人工智能技术的飞速发展&#xff0c;大模型成为了业界关注的焦点。然而&#xff0c;大模型并非万能&#xff0c;其背后隐藏着诸多迷思与挑战。本文基于“AGI技术50人”访谈栏目的素材&…...

国内12寸先进封装厂家的一些情况

一、12寸先进封装厂家 在中国大陆&#xff0c;专注于12英寸&#xff08;300mm&#xff09;晶圆的先进封装技术的企业包括但不限于以下几家&#xff1a; 1. 长电科技&#xff08;JCET Technologies Co., Ltd.&#xff09;&#xff1a;长电科技是中国领先的半导体封装测试企业之…...

【代码随想录训练营】【Day 48】【动态规划-7】| 卡码 57, Leetcode 322, 279

【代码随想录训练营】【Day 48】【动态规划-7】| 卡码 57&#xff0c; Leetcode 322&#xff0c; 279 需强化知识点 python 的幂次计算&#xff0c; 10 ** 5&#xff0c; 10 **&#xff08;0.5&#xff09; 题目 卡码 57. 爬楼梯&#xff08;第八期模拟笔试&#xff09; 注…...

购物券网站怎么做/青岛网络推广公司排名

先下载MAT http://www.eclipse.org/mat/downloads.php然后打开压缩包的分析工具然后在Android Studio 3.1.2上打开Android Profile gc dump然后在profile的左上角有个门一样的图标 点击导出到电脑本地 我这里是C:\AS\Project\ArcFaceDemo\.gradle\test.hprof 然后打开cmd C:\AS…...

wordpress页面内/360优化大师app下载

约束注解名称 约束注解说明 null 验证对象是否为空 notnull 验证对象是否为非空 asserttrue 验证 boolean 对象是否为 true assertfalse 验证 boolean 对象是否为 false min 验证 number 和 string 对象是否大等于指定的值 max …...

图库网站建设/营销策划主要做些什么

起初照着官方文档配&#xff0c;一直出错&#xff0c;貌似官方的文档时错的&#xff0c;查了非常多资料&#xff0c;综合整理了一个可行的方案&#xff0c;例如以下&#xff1a; 0.1包结构 test.demo test.domain //实体类 test.util//工具类 0.2导如的jar包 hibernate-4.3.5的…...

阿德莱德做网站/单页网站怎么优化

在做条形码识别的时候&#xff0c;有可能碰到条形码因为被破坏&#xff0c;无法识别的情况。通常1D条形码的下面都印着对应的数字。这个时候还可以借助下OCR。虽然OCR的成功率可能不高&#xff0c;但是多一种识别方法也是好的。这里分享下如何用Tesseract.js来识别一张1D条形码…...

网站建设策划书格式及范文/网络推广外包公司

如何在控制台获取到某个元素的Scope呢&#xff1f;假设&#xff0c;页面元素为&#xff1a;<label>Name:</label><input type"text" ng-model"yourName" placeholder"Enter a name here"><h1>{{yourName}}</h1>→…...

led高端网站建设/自动的网站设计制作

现在微信的用户体验一直被产品经理们所推崇,今天这里具体分析一下微信在WebView的进度条上怎么提升用户体验.最终微信的加载进度条的效果图网络正常的状态&#xff0c;分为两种加载速度,前部分正常速度加载,后边速度特意放慢,让用户感觉到你在非常卖力的在进行网络请求.断开网络…...