数据可视化——pyecharts库绘图
目录
官方文档
使用说明:
点击基本图表
可以点击你想要的图表
安装:
一些例图:
柱状图:
效果:
折线图:
效果:
环形图:
效果:
南丁格尔图(玫瑰图):
效果:
堆叠折线图:
效果:
堆叠柱状图:
编辑
拟合散点曲线图:
官方文档
使用说明:
点击基本图表
-
可以点击你想要的图表
- 可以点击Demo里面有例图以及代码,可以复制下来再根据需求来改
- 要查询图表的配置也可以到全局配置里面查找
安装:
pip install pyecharts -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
一些例图:
这里引用的是一个全国各省份的GDP数据(需要拿来练习的可以私我拿数据~)
柱状图:
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType# 加载数据集
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')# 提取2016年的数据并按GDP降序排列取前10个省份
data_2016 = data[['province','2016']]
top_10_gdp = data_2016['2016'].sort_values(ascending=False).head(10)
top_10_province = data_2016.loc[top_10_gdp.index, 'province']
# 获取省份和GDP数据
provinces = top_10_province.tolist()
gdp_values = top_10_gdp.tolist()# 使用Pyecharts绘制柱状图
init_opts=opts.InitOpts(width='1000px',height='450px',theme=ThemeType.LIGHT)
bar = (Bar().add_xaxis(provinces).add_yaxis("GDP",gdp_values).set_global_opts(title_opts=opts.TitleOpts(title="2016年全国排名前10的省份GDP"),xaxis_opts=opts.AxisOpts(name="省份"), yaxis_opts=opts.AxisOpts(name="GDP(亿元)"),)
)
bar.render_notebook() # 将图表保存为HTML文件
效果:
折线图:
from pyecharts.charts import Line
from pyecharts import options as opts
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')
data_gx=data.loc[19]
data_gx
year_gx=data_gx.index.to_list()[1:][::-1]
gdp=list(data_gx.values)[1:][::-1]
years=year_gx[:10]
line = (Line().add_xaxis(years).add_yaxis("广西GDP", gdp) # 设置曲线光滑.set_global_opts(title_opts=opts.TitleOpts(title="广西1997年至2016年的折线图"),xaxis_opts=opts.AxisOpts(name="年份"),yaxis_opts=opts.AxisOpts(name="GDP") # 在这里添加逗号)
)line.render_notebook()
效果:
环形图:
import matplotlib.pyplot as plt
from pyecharts import options as opts
from pyecharts.charts import Pie # 导入 Pie 类
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')
data_2014 = data[['province', '2014']]
top_10_gdp = data_2014['2014'].sort_values(ascending=False).head(10)
top_10_province = data_2014.loc[top_10_gdp.index, 'province']
gdp = top_10_gdp.tolist()
provinces = top_10_province.tolist()pie=Pie()
pie.add('',[list(z)for z in zip(provinces,gdp)],radius=[70, 150])
pie.set_global_opts(title_opts=opts.TitleOpts(title='2024年全国各省GDP排名前十的省份', pos_top="5%"),legend_opts=opts.LegendOpts(pos_bottom="5%"))
pie.set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}亿元({d}%)'))
pie.render_notebook()
效果:
南丁格尔图(玫瑰图):
import matplotlib.pyplot as plt
from pyecharts import options as opts
from pyecharts.charts import Page, Pie
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')
data_gx=data.loc[19]
#获取广西近八年GDP数据
year_gx=data_gx.index.to_list()[1:]
year_gx=year_gx[:8]
gdp_gx=list(data_gx.values)[1:][:8]#获取江苏近八年GDP数据
data_js=data.loc[9]
year_js=data_js.index.to_list()[1:][:8]
gdp_js=list(data_js.values)[1:][:8]# 绘制广西南丁格尔玫瑰图(area型)
guangxi_pie = (Pie().add(series_name="广西近8年的GDP", # 系列名称data_pair=[list(z) for z in zip(year_gx, gdp_gx)], # 数据对,形如 [('2014', 100), ('2015', 120), ...]radius=[50, 200], # 设置半径,形成南丁格尔玫瑰图rosetype="area", # 设置玫瑰图类型为 area).set_global_opts(title_opts=opts.TitleOpts(title="广西近8年 GDP 变化"), # 设置标题legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_right="2%")).set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}(亿元)({d}%)'))
)# 绘制江苏南丁格尔玫瑰图(radius型)
jiangsu_pie = (Pie().add(series_name="江苏 GDP 变化", # 系列名称data_pair=[list(z) for z in zip(year_js, gdp_js)], # 数据对,形如 [('2014', 200), ('2015', 220), ...]radius=[50, 200], # 设置半径,形成南丁格尔玫瑰图rosetype="radius", # 设置玫瑰图类型为 radius).set_global_opts(title_opts=opts.TitleOpts(title="江苏近8年 GDP 变化"), # 设置标题legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_right="2%")).set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}(亿元)({d}%)'))
)# 创建一个页面,并将两个图添加到页面中
page = Page()
page.add(guangxi_pie)
page.add(jiangsu_pie)# 渲染并保存 HTML 文件
page.render_notebook()
效果:
堆叠折线图:
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Line
from pyecharts.globals import ThemeType
from pyecharts import options as opts
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv')
# 截取北京的数据
data_bj = data.loc[0]
year_bj = data_bj.index.to_list()[1:]
gdp_bj = list(data_bj.values)[1:]# 截取上海数据
data_sh = data.loc[8]
year_sh = data_sh.index.to_list()[1:]
gdp_sh = list(data_sh.values)[1:]# 截取广东数据
data_gd = data.loc[18]
year_gd = data_gd.index.to_list()[1:]
gdp_gd = list(data_gd.values)[1:]# 创建堆叠面积图对象
line = Line()# 添加数据并设置堆叠属性
line.add_xaxis(year_bj)
line.add_yaxis("北京", gdp_bj, is_smooth=True, stack="stack1", areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
line.add_yaxis("上海", gdp_sh, is_smooth=True, stack="stack1", areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
line.add_yaxis("广东", gdp_gd, is_smooth=True, stack="stack1", areastyle_opts=opts.AreaStyleOpts(opacity=0.5))# 设置全局配置项
line.set_global_opts(title_opts=opts.TitleOpts(title="北京、上海、广东历年GDP变化堆叠面积图"),xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),yaxis_opts=opts.AxisOpts(type_="value", name="GDP(亿元)"),tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)# 渲染图像
line.render_notebook()
效果:
堆叠柱状图:
from pyecharts.charts import Bar
import pandas as pd
from pyecharts import options as opts
from pyecharts.globals import ThemeType#截取广西数据
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv')
data_gx=data.loc[19]
year_gx=data_gx.index.to_list()[1:][::-1]
gdp_gx=list(data_gx.values)[1:][::-1]#截取广东数据
data_gd=data.loc[18]
year_gd=data_gd.index.to_list()[1:][::-1]
gdp_gd=list(data_gd.values)[1:][::-1]# 绘制堆叠柱状图
bar = Bar() # 注意:这里你可能需要导入InitOpts,但在某些版本的Pyecharts中可能不是必需的
bar.add_xaxis(year_gx)
# 注意:添加stack参数并将值设置为相同的字符串(例如'gdp'),以使序列堆叠
bar.add_yaxis("广西", gdp_gx, stack="gdp")
bar.add_yaxis("广东", gdp_gd, stack="gdp") bar.set_global_opts( title_opts=opts.TitleOpts(title="近年来广西和广东的GDP趋势"), xaxis_opts=opts.AxisOpts(type_="category"), yaxis_opts=opts.AxisOpts(type_="value", name="GDP (亿元)"), legend_opts=opts.LegendOpts(pos_left="center", pos_top="top")
)
bar.render_notebook()
拟合散点曲线图:
mport pandas as pd
import numpy as np
from pyecharts import options as opts
from pyecharts.charts import Line
from pyecharts.charts import Scatter
from pyecharts.globals import ThemeType
data=pd.read_csv(r"D:\Dabby\Documents\数据可视化\gdp.csv",encoding='utf-8')
#截取广西数据
data_gx=data.loc[19]
year_gx=data_gx.index.to_list()[1:]
gdp_gx=list(data_gx.values)[1:]
#先绘制散点图
scatter=Scatter()
scatter.add_xaxis(year_gx)
scatter.add_yaxis("GDP",gdp_gx)
scatter.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
scatter.set_global_opts(title_opts=opts.TitleOpts(title='广西的20年gdp散点拟合曲线'))
scatter.render_notebook()
#计算拟合三次多项式的x,y,z
year_gx_float = np.array(year_gx, dtype=float)
gdp_gx_float = np.array(gdp_gx, dtype=float)
poly=np.polyfit(year_gx_float,gdp_gx_float,deg=3)
#绘制拟合曲线散点图
line=Line()
line.add_xaxis(list(year_gx))
line.add_yaxis('GDP', np.polyval(poly, year_gx_float))
line.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
scatter.overlap(line)
scatter.render_notebook()
相关文章:
数据可视化——pyecharts库绘图
目录 官方文档 使用说明: 点击基本图表 可以点击你想要的图表 安装: 一些例图: 柱状图: 效果: 折线图: 效果: 环形图: 效果: 南丁格尔图(玫瑰图&am…...
Python的return和yield,哪个是你的菜?
目录 1、return基础介绍 📚 1.1 return用途:数据返回 1.2 return执行:函数终止 1.3 return深入:无返回值情况 2、yield核心概念 🍇 2.1 yield与迭代器 2.2 生成器函数构建 2.3 yield的暂停与续行特性 3、retur…...
持续总结中!2024年面试必问 20 道分布式、微服务面试题(七)
上一篇地址:持续总结中!2024年面试必问 20 道分布式、微服务面试题(六)-CSDN博客 十三、请解释什么是服务网格(Service Mesh)? 服务网格(Service Mesh)是一种用于处理服…...
AJAX 跨域
这里写目录标题 同源策略JSONPJSONP 是怎么工作的JSONP 的使用原生JSONP实践CORS 同源策略 同源: 协议、域名、端口号 必须完全相同、 当然网页的URL和AJAX请求的目标资源的URL两者之间的协议、域名、端口号必须完全相同。 AJAX是默认遵循同源策略的,不…...
3 数据类型、运算符与表达式-3.1 C语言的数据类型和3.2 常量与变量
数据类型 基本类型 整型字符型实型(浮点型) 单精度型双精度型 枚举类型 构造类型 数组类型结构体类型共用体类型 指针类型空类型 #include <stdio.h> #include <string.h> #include <stdbool.h> // 包含布尔类型定义 // 常量和符号常量 #define PRICE 30//…...
NSSCTF-Web题目5
目录 [SWPUCTF 2021 新生赛]error 1、题目 2、知识点 3、思路 [LitCTF 2023]作业管理系统 1、题目 2、知识点 3、思路 [HUBUCTF 2022 新生赛]checkin 1、题目 2、知识点 3、思路 [SWPUCTF 2021 新生赛]error 1、题目 2、知识点 数据库注入、报错注入 3、思路 首先…...
cnvd_2015_07557-redis未授权访问rce漏洞复现-vulfocus复现
1.复现环境与工具 环境是在vulfocus上面 工具:GitHub - vulhub/redis-rogue-getshell: redis 4.x/5.x master/slave getshell module 参考攻击使用方式与原理:https://vulhub.org/#/environments/redis/4-unacc/ 2.复现 需要一个外网的服务器做&…...
免费,C++蓝桥杯等级考试真题--第7级(含答案解析和代码)
C蓝桥杯等级考试真题--第7级 答案:D 解析:步骤如下: 首先,--a 操作会使 a 的值减1,因此 a 变为 3。判断 a > b 即 3 > 3,此时表达式为假,因为 --a 后 a 并不大于 b。因此,程…...
python为什么要字符串格式化
Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能。相对于老版的%格式方法,它有很多优点。 1.在%方法中%s只能替代字符串类型,而在format中不需要理会数据类型; 2.单个参数可以…...
go语言后端开发学习(三)——基于validator包实现接口校验
前言 在我们开发模块的时候,有一个问题是我们必须要去考虑的,它就是如何进行入参校验,在gin框架的博客中我就介绍过一些常见的参数校验,大家可以参考gin框架学习笔记(四) ——参数绑定与参数验证,而这个其实也不是能够完全应对我…...
系统架构设计师【补充知识】: 应用数学 (核心总结)
一、 图论之最小生成树 (1)定义: 在连通的带权图的所有生成树中,权值和最小的那棵生成树(包含图中所有顶点的树),称作最小生成树。 (2)针对问题: 带权图的最短路径问题。 (3)最小生成树的解法有普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法,我…...
【ArcGIS微课1000例】0118:一文讲清楚tif(geotiff)栅格数据格式
文章目录 一、Tiff概述二、GeoTiff概述1. ovr文件2. tfw文件3. xml文件4. dbf文件一、Tiff概述 TIFF(Tagged Image File Format)是一种常见的图像文件格式,它被广泛用于存储和传输各种类型的图像数据。下面是对TIFF格式数据的介绍: 图像存储:TIFF格式可以存储多通道的位…...
调用第三方API --------------Python篇
在项目开发过程中,可能需要调用第三方的一些API或者公司提供的数据接口来得到相应的数据或者实现对应的功能。 因此API的调用和数据接口的访问都是做数据分析的一个常用操作,如何快速实现API和数据接口的调用,网上一般提供很多语言版本&#…...
Web自动化测试-掌握selenium工具用法,使用WebDriver测试Chrome/FireFox网页(Java
目录 一、在Eclipse中构建Maven项目 1.全局配置Maven 2.配置JDK路径 3.创建Maven项目 4.引入selenium-java依赖 二、Chrome自动化脚本编写 1.创建一个ChromeTest类 2.测试ChromeDriver 3.下载chromedriver驱动 4.在脚本中通过System.setProperty方法指定chromedriver的…...
maven多模块项目搭建
文章目录 创建方式创建父项目创建子模块 目录结构示例父模块模块A模块B(并在模块B中引入模块A) 注意事项 创建方式 创建父项目 #创建文件夹后,进入目录,执行以下命令 PS D:\demo> mvn archetype:generate #将输出很多模板&am…...
PostgreSQL的视图pg_tables
PostgreSQL的视图pg_tables pg_tables 是 PostgreSQL 中的一个系统视图,用于显示当前数据库中所有用户定义的表的信息。这个视图提供了关于表的名称、所属模式(schema)、所有者以及表类型等详细信息。 pg_tables 视图的主要列 列名类型描述…...
Stable diffusion采样器详解
在我们使用SD web UI的过程中,有很多采样器可以选择,那么什么是采样器?它们是如何工作的?它们之间有什么区别?你应该使用哪一个?这篇文章将会给你想要的答案。 什么是采样? Stable Diffusion模…...
为什么要进行渗透测试?
渗透测试的重要性 渗透测试是一种安全评估技术,旨在模拟黑客攻击,发现和利用系统漏洞,以评估企业信息系统的安全性。以下是进行渗透测试的几个主要原因: 1.发现潜在的漏洞和安全风险:渗透测试可以模拟真实的攻击行为…...
后方碰撞预警系统技术规范(简化版)
后方碰撞预警系统技术规范(简化版) 1 系统概述2 预警区域3 预警目标4 功能需求功能条件5 显示需求6 指标需求1 系统概述 后方碰撞预警系统RCW(Rear Collision Warning)是在后方车辆即将与自车发生碰撞之前,激活危险警告灯以较高频率闪烁,从而吸引后方驾驶员的注意力,避免…...
Position定位
Position定位 CSS中position属性是比较常用的元素定位方案,position常用的取值有static、relative、absolute、fixed、sticky、inherit。 static static属性是HTML元素的默认值,即没有定位,遵循正常的文档流对象,对于top、bott…...
npm install 的原理
1. 执行命令发生了什么 ? 执行命令后,会将安装相关的依赖,依赖会存放在根目录的node_modules下,默认采用扁平化的方式安装,排序规则为:bin文件夹为第一个,然后是开头系列的文件夹,后…...
基于I2C协议的OLED显示(利用U82G库)
目录 一、I2C协议 1、了解I2C协议的基本原理和时序协议 基本原理 时序协议 2、掌握0.96寸OLED屏的工作原理,汉字点阵显示原理 OLED 工作原理 汉字点阵显示原理 3、掌握开源GUI库U82G在stm32上的移植编译方法,以及图形界面可视化技术。 二、具体…...
【文末附gpt升级秘笈】探索AGI之路:穿越大模型的冰与火,谱写未来技术的乐章
探索AGI之路:穿越大模型的冰与火,谱写未来技术的乐章 摘要 随着人工智能技术的飞速发展,大模型成为了业界关注的焦点。然而,大模型并非万能,其背后隐藏着诸多迷思与挑战。本文基于“AGI技术50人”访谈栏目的素材&…...
国内12寸先进封装厂家的一些情况
一、12寸先进封装厂家 在中国大陆,专注于12英寸(300mm)晶圆的先进封装技术的企业包括但不限于以下几家: 1. 长电科技(JCET Technologies Co., Ltd.):长电科技是中国领先的半导体封装测试企业之…...
【代码随想录训练营】【Day 48】【动态规划-7】| 卡码 57, Leetcode 322, 279
【代码随想录训练营】【Day 48】【动态规划-7】| 卡码 57, Leetcode 322, 279 需强化知识点 python 的幂次计算, 10 ** 5, 10 **(0.5) 题目 卡码 57. 爬楼梯(第八期模拟笔试) 注…...
【Qt】Qt常见的数据类型
思维导图 学习目标 一、基础类型 因为Qt是一个C的框架,因此C的语法和数据类型在Qt中都是被支持的,但是Qt中也是定义了一些属于自己的数据类型,不过,好多数据类型都是对C的数据类型进行封装,下面来简要介绍一下这些基…...
【源码】Spring Data JPA原理解析之事务执行原理
Spring Data JPA系列 1、SpringBoot集成JPA及基本使用 2、Spring Data JPA Criteria查询、部分字段查询 3、Spring Data JPA数据批量插入、批量更新真的用对了吗 4、Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作 5、Spring Data JPA自定…...
第十一篇——信息增量:信息压缩中的保守主义原则
目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么? 四、总结五、升华 一、背景介绍 通过信息中的保守主义,我想到了现实中人的保守主义一样&#…...
中国飞行器设计创新大赛多旋翼无人机任务飞行
源码:后续补充 1、启动launch文件 roslaunch robot_bringup mission.launch <launch> <!--启动mavros节点 --><include file"$(find mavros)/launch/px4.launch" /><!--启动USB摄像头节点 --><include file"$(find…...
WPF-UI布局
WPF布局元素有如下几个: Grid:网格。可以自定义行和列并通过行列的数量、行高和列宽来调整控件的布局。StackPanel:栈式面板。可将包含的元素在竖直或水平方向上排成一条直线,当移除一个元素后,后面的元素会自动向前移…...
上海建智咨询培训网站/seo博客优化
简介 本节课需要实现的内容是使用纹理贴图来模拟文字效果。使用这种技术显示文字的好处在于程序的效果在任何机器上都是相同的。而我们前面讨论的显示文字的方法都是依赖于当前系统中所包含的字体,所以前面讨论的技术在不同的机器上有可能会有不同的显示效果。 使用…...
网站建设执招标评分表/如何做网页
最近学习Runtime,顺便总结一下在Objective-C中KVO使用到的Runtime机制。 系统的KVO使用 故事还得从OC的KVO说起,一般的我们使用KVO类似的如下所示,创建一个对象,然后调用addObserver方法进行某个属性的监听,有意思的是…...
做分销网站多少钱/优化技术
  [导读]:江苏省2016年上半年全国计算机等级考试社会考生报名时间:12月11日—12月31日我省2016年上半年全国计算机等级考试(NCRE)社会考生报名工作将于12月11日—12月31日进行。本次考试报名工作采用网上报名方式,社会考生可在规定时间内…...
免费视频素材网站哪个最好/站长之家工具高清
WINDOWS 7 PRO X86 2015年9月增量补丁包,从Windowsupdate.log中提取的微软官方下载地址,大部分是2015年9月8日发布的,可以通过下载软件批量下载:http://download.windowsupdate.com/d/msdownload/update/software/secu/2015/08/wi…...
泸州做网站的公司有哪些/营销软文范文200字
DNS解析服务器 一、DNS概述 DNS(Domain Name Server,域名服务器)是进行域名(domain name)和与之相对应的IP地址 (IP address)转换的服务器。DNS中保存了一张域名(domain name)和与之相对应的IP地址 (IP address)的表,以解析消息的…...
国内商城网站建设/海外营销
一、DFE(Design for Environment)面向环境的设计 二、DFM(Design for Manufacture)面向制造的设计 DFM的最终设计的主要目的是对产品成本的控制,主要包括下面几部分: 1.估计制造成本 输入输出模型 输入&…...