什么是大型语言模型 ?
引言
在本文[1]中,我们将从高层次概述大型语言模型 (LLM) 的具体含义。
背景
2023年11月,我偶然间听闻了OpenAI的开发者大会,这个大会展示了人工智能领域的革命性进展,让我深深着迷。怀着对这一领域的浓厚兴趣,我加入了ChatGPT,并很快被激发了学习其背后的大型语言模型(LLMs)技术的热情。然而,像许多人一样,我对LLMs一窍不通,不知道如何入门。
模型定义
大型语言模型(LLMs),例如ChatGPT,正在成为当今技术界的热门话题。根据维基百科,LLM的定义是:LLM是一种因其能够实现通用语言理解和生成而著称的语言模型。它们通过在计算密集型的自我监督和半监督训练过程中学习文本文档的统计关系,从而获得这些能力。LLM是采用变换器架构的人工神经网络。
换句话说:LLMs通过在包括书籍、网站和用户生成内容在内的大量文本数据集上进行训练,能够以一种自然的方式生成延续初始提示的新文本。
LLM模型本质上是一个参数众多的神经网络。简单来说,参数越多,模型的性能通常越好。因此,我们经常听到关于模型大小的讨论,这实际上是指其参数的数量。比如,GPT-3拥有1750亿个参数,而GPT-4的参数数量可能超过1万亿。
-
但模型具体长什么样呢?
语言模型只是一个二进制文件:
上图中,参数文件是Meta的Llama-2–70b模型,大小为140GB,包含70b个参数(数字格式)。 run.c文件是推理程序,用于查询模型。训练这些超大型模型是非常昂贵的。训练像 GPT-3 这样的模型需要花费数百万美元。
目前,表现最为卓越的模型 GPT-4 已经不再是单一的模型,而是多个模型的集合体。这些模型各自针对特定领域进行了训练或微调,它们在推理时相互协作,以实现最优的性能表现。
不过,无需担心,我们的目标是掌握大型语言模型的基础理论。幸运的是,我们完全可以在自己的个人电脑上,用参数数量少得多的模型进行训练。
模型推理
当模型训练完毕并准备就绪后,用户用问题查询模型,问题文本将传递到该 140GB 文件中并逐个字符进行处理,然后返回最相关的文本作为结果输出。
最相关的意思是模型将返回最有可能是输入文本的下一个字符的文本。例如,
> Input: "I like to eat"
> Output: "apple"
"apple" 被预测为接下来的单词,这是因为在模型训练所用的大量数据中,"I like to eat" 后面最常跟随的就是 "apple"。
我们之前提到的书籍和网站,现在可以这样理解:基于我们提供的数据片段,模型学习到 "I like to eat apple" 是一个频繁出现的句子。而 "I like to eat banana" 也是一个常见的句子,但出现频率没有前者高。
在模型训练时,它:记录了 "apple" 在 "I like to eat" 后面出现的概率为 0.375. 记录了 "banana" 在 "I like to eat" 后面出现的概率为 0.146 和 … 其他单词的概率记录 …
这些概率值实际上被保存在模型文件中,形成了概率集合。(在机器学习中,这些概率通常被称作权重。)简而言之,LLM模型就像是一个概率数据库,它能够为任何特定的字符以及其上下文相关的字符赋予一定的概率分布。
在2017年之前,这样的技术听起来还像是天方夜谭。然而,自从论文《Attention is all you need》发表之后,Transformer 架构的出现,使得通过训练神经网络处理庞大的数据集,实现对上下文的深入理解成为现实。
模型架构
在大型语言模型(LLM)诞生之前,神经网络的机器学习确实只能使用较小的数据集,对于文本的上下文理解能力十分有限。这导致早期的模型无法像人类那样深入理解文本。
该论文最初发表时,是为了训练用于语言翻译的模型。但OpenAI的团队意识到,Transformer 架构是实现字符预测的关键技术。一旦模型经过整个互联网数据的训练,它就可能像人类一样,理解任何文本的上下文,并流畅地完成句子。
下面是一个图解,描述了模型训练过程中的内部机制:
初次接触时我们可能不太明白,但别担心,我们将在随后的文章中逐步解释清楚。
Source: https://medium.com/@waylandzhang/what-is-large-language-model-llms-zero-to-hero-06f329767d03
本文由 mdnice 多平台发布
相关文章:
什么是大型语言模型 ?
引言 在本文[1]中,我们将从高层次概述大型语言模型 (LLM) 的具体含义。 背景 2023年11月,我偶然间听闻了OpenAI的开发者大会,这个大会展示了人工智能领域的革命性进展,让我深深着迷。怀着对这一领域的浓厚兴趣,我加入了…...
RocketMq详解:二、SpringBoot集成RocketMq
在上一章中我们对Rocket的基础知识、特性以及四大核心组件进行了详细的介绍,本章带着大家一起去在项目中具体的进行应用,并设计将其作为一个工具包只提供消息的分发服务和业务模块进行解耦 在进行本章的学习之前,需要确保你的可以正常启动和…...
【源码】二开版微盘交易系统/贵金属交易平台/微交易系统
二开版微盘交易系统/贵金属交易平台/微交易系统 一套二开前端UI得贵金属微交易系统,前端产品后台可任意更换 此系统框架不是以往的至尊的框架,系统完美运行,K线采用nodejs方式运行 K线结算都正常,附带教程 资源来源:https://www.…...
React@16.x(26)useContext
目录 1,上下文的使用2,useContext 1,上下文的使用 之前的文章中介绍过 context上下文。 使用举例: import React, { useState } from "react";const ctx React.createContext();function Child() {return <ctx.C…...
Vue2学习(04)
目录 一、组件的三大组成部分 二、组件的样式冲突scoped 三、scoped原理 编辑 四、data是一个函数 五、组件通信 1.概念:是指组件与组件之间的数据传递,组件的数据是独立的,无法直接访问其他组件的数据,想用其他组件的数…...
Python中columns()函数
1. columns的概念 在数据分析和处理中,columns是指数据表中的列,也称为字段。每一列代表了特定类型的数据,在一个数据表中,每一行代表了一个数据实例,而每一列则代表了一个特定的特征或属性。 可以直接定义和更改列标题,也可以直接读取某列的数据,或者对某列进行运算。…...
Vue3 使用 vue-clipboard3 实现一键复制
安装依赖 npm install --save vue-clipboard3示例 <template><el-input v-model"data"></el-input><button click"touchCopy">复制链接</button> </template><script setup lang"ts"> // 导入插件 …...
人机环境生态系统智能的流动性
一般来说,流动性可以理解为事物在空间或时间上的转移、变化或运动。在人机环境生态系统中,流动性可以涉及以下几个方面: 信息流动:数据、消息、知识等在系统中的传递和交换。这可能包括传感器收集的数据传输到处理中心,…...
实现开源可商用的 ChatPDF RAG:密集向量检索(R)+上下文学习(AG)
实现 ChatPDF & RAG:密集向量检索(R)上下文学习(AG) RAG 是啥?实现 ChatPDF怎么优化 RAG? RAG 是啥? RAG 是检索增强生成的缩写,是一种结合了信息检索技术与语言生成…...
对待谷歌百度等搜索引擎的正确方式
对待百度、谷歌等搜索引擎的方式是,你要站在搜索引擎之上,保持自己的独立思想和意见。 当谷歌宣布他们将会根据一个名为“Alphabet”的新控股公司来进行业务调整时,在科技界引起了一片恐慌之声。 永远不要说这是一个公司一直在做的事情。不…...
pikachu靶场通关全流程
目录 暴力破解: 1.基于表单的暴力破解: 2.验证码绕过(on server): 3.验证码绕过(on client): token防爆破: XSS: 1.反射型xss(get): 2.反射性xss(post): 3.存储型xss&#…...
实现k8s网络互通
前言 不管是docker还是k8s都会在物理机组件虚拟局域网,只不过是它们实现的目标不同。 docker:针对同一个物理机(宿主机) k8s:针对的是多台物理机(宿主机) Docker 虚拟局域网 K8S虚拟局域网 …...
diffusers 使用脚本导入自定义数据集
在训练扩散模型时,如果附加额外的条件图片数据,则需要我们准备相应的数据集。此时我们可以使用官网提供的脚本模板来控制导入我们需要的数据。 您可以参考官方的教程来实现具体的功能需求,为了更加简洁,我将简单描述一下整个流程…...
【Android面试八股文】请讲一讲synchronized和ReentrantLock的区别
文章目录 请讲一讲synchronized和ReentrantLock的区别这道题想考察什么 ?考察的知识点应该如何回答?Synchronized 的原理ReentrantLock 的原理Synchronized 和 ReentrantLock 的区别总结请讲一讲synchronized和ReentrantLock的区别 这道题想考察什么 ? 是否了解并发相关的理…...
springmvc 全局异常处理器配置的三种方式深入底层源码分析原理
文章目录 springmvc 全局异常处理器配置的三种方式&深入底层源码分析原理配置全局异常处理器的三种方式实现接口HandlerExceptionResolver并配置到WebMvcConfigurer注解式配置ExceptionHandlercontroller里方法上定义ExceptionHandler 深入源码分析进入DispatcherServlet执…...
MySQL 8.0 安装、配置、启动、登录、连接、卸载教程
目录 前言1. 安装 MySQL 8.01.1 下载 MySQL 8.01.2 安装 MySQL 8.0 2. 配置 MySQL 8.02.1打开环境变量2.2新建变量 MYSQL_HOME2.3编辑 Path 变量 3. 启动MySQL 8.03.1验证安装与配置是否成功3.2初始化并注册MYSQL3.3 启动MYSQL服务 4.登录MySQL4.1修改账户默认密码4.2登录MYSQL…...
Pythone 程序打包成 exe
1.安装pyinstaller # 安装 pip install pyinstaller # 查看版本 pyinstaller -v2.更新pyinstaller 版本 # 更新 pip install --upgrade pyinstaller # 查看版本 pyinstaller -v3.切换到 py文件所在目录 #切换到.py所在的目录 E: cd cd E:\x-svn_x-local\04PythoneProjects\A…...
“卫星-无人机-地面”遥感数据快速使用及地物含量计算
随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国双利合谱、智科远达、中科谱光等无人机数据的兴起,遥感数据越来越易得。这些多源数据,在与典型地面点结合后,将…...
设计模式学习(二)工厂模式——简单工厂模式
设计模式学习(二)工厂模式——简单工厂模式 前言简单工厂模式简介示例优点缺点使用场景 前言 工厂模式是一种常用的设计模式,属于创建型模式之一。它的主要目的是为了解耦组件之间的依赖关系。通过使用工厂模式,系统中的具体类的…...
贷款业务——LPR、APR、IRR
文章目录 LPR(Loan Prime Rate)贷款市场报价利率APR(Annual Percentage Rate)年化百分比利率IRR(Internal Rate of Return)内部收益率 LPR、APR 和 IRR 是三个不同的金融术语,LPR 是一种市场利率…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
