当前位置: 首页 > news >正文

点云分割报告整理(未完成版-每天写一点)

体积占用网格表示对点进行体素化,然后使用3d卷积神经网络来学习体素级语义。由于点云的稀疏性,体素化效率低,为避免较高的计算成本而忽略了细节。此外,由于同一体素内的所有点都被赋予了相同的语义标签,因此精度受到限制。为了利用传统的那些2D分割框架,尝试将3D空间从多角度映射到二维空间,然后分割完成后再投影回去,然而,重新投影回3d空间也是一个重要的问题。

非结构化点云的 3d 语义分割存在的问题:

1.大规模点云数据

2.不规则形状

3.非均匀密度

Pointnet

PointNet是第一个直接处理原始点云的方法。只有全连接层和最大池化层,PointNet网络在推理速度上具有强大的领先优势,并且可以很容易地在CPU上并行化。

困难:

由于点云不是常规数据格式,通常将此类数据转换为规则的 3D 体素网格或图像集合,然后再用神经网络进行处理。数据表示转换使生成的数据过于庞大。

应对点云的无序性有三种方案:

方案1:排序

高维空间的排序,不可稳定

方案2:假如有N个点,N!种排列训练一个RNN。

2015年《Order Matters: Sequence to sequence for sets》证明RNN网络对序列的排序还是有要求的。

方案3:设计对称函数,因为输入顺序对于对称函数没有影响。比如:加法、乘法

PointNet使用的最大池化,是对称函数。

Pointnet的解决方法:

训练一个正交矩阵,将点云对齐

使用单个对称函数 max pooling

限制:

PointNet架构有两个限制将其性能限制在更大、更复杂的点云上。一方面,只集成了点特征和池化的全局特征,无法捕获相邻点所代表的局部结构。另一方面,首先将点云细分为小体积块,每个块都是独立预测的,没有任何连接。因此,点网的整体精度在复杂场景中受到限制。

PointNet++

PointNet 没有捕捉到由现场的度量空间点引起的局部结构,限制了其识别细粒度模式和对复杂场景的泛化能力。

Pointnet可以通过一组稀疏的关键点来总结输入点云,这些关键点大致对应可视化骨架。PointNet 对输入点的小扰动以及点插入(异常值)或删除(缺失数据)损坏具有高度鲁棒性。

点集通常以不同的密度进行采样,这导致在均匀密度上训练的网络的性能大大降低,我们提出了一种新的集合学习层来自适应地组合多个尺度的特征。

为了实现这一目标,提出了密度自适应点网层,当输入采样密度发生变化时,这些点网层可以学习组合来自不同尺度区域的特征。具有密度自适应点网层的分层网络称为pointnet++

PointNet++的设计必须解决两个问题:如何生成点集的划分,以及如何通过局部特征学习器抽象点集或局部特征。

2种方案:

(a)多尺度分组(MSG);(b)多分辨率分组(MRG)

PointSIFT

PointSIFT是在pointnet++的基础上改进的,引入了尺度不变特征变换。

八叉树

八叉树(Octree)的定义:若不为空树的话,树中任一节点的子节点恰好只会有八个,或零个,也就是子节点不会有08以外的数目。

八叉树在3D空间中,可以很快地知道物体在3D场景中的位置。

八叉树算法的算法实现简单,但大数据量点云数据下,其使用比较困难的是最小粒度(叶节点)的确定。

3D-RNN

为了捕捉局部特征,使用步长为1 的金字塔池化。

方式1步长固定、窗口大小不同

方式2 窗口大小固定,不同步长

采用双向RNN,具体来说,首先将点云沿两个水平方向(xy)细分为部分重叠的块。椅子通常在桌子附近,窗户通常在墙内。

相关文章:

点云分割报告整理(未完成版-每天写一点)

体积占用网格表示对点进行体素化,然后使用3d卷积神经网络来学习体素级语义。由于点云的稀疏性,体素化效率低,为避免较高的计算成本而忽略了细节。此外,由于同一体素内的所有点都被赋予了相同的语义标签,因此精度受到限…...

python基础 002 - 1 基础语法

1 标识符(identifier),识别码,表明身份 身份证,ID 定义:在编程语言中标识符就是程序员自己规定的具有特定含义的词,比如类名称、属性名称、变量名等, 在Python 中,pyt…...

浅谈Web开发的三大主流框架:Angular、React和Vue.js

在现代Web开发领域,Angular、React和Vue.js作为三大主流前端框架,各自拥有独特的特点和优势,为开发者提供丰富的选择。让我们更深入地了解这三大框架,并通过一些小型样例来展示它们的特性。 Angular Angular是一个完整的前端框架…...

使用net.sf.mpxj读取project的.mpp文件

1、导入.mpp文件 public void importMppFile(String updateType, MultipartFile multipartFile) {try (InputStream inputStream multipartFile.getInputStream()) {// 读取文件的组件MPPReader mppReader new MPPReader();// 注意,如果在这一步出现了读取异常&a…...

ubuntu 22.04 升级到24.04

step1. sudo apt update sudo apt upgrade sudo apt dist-upgrade step2. sudo apt autoremove step3. sudo apt install update-manager-core step4. sudo vim /etc/update-manager/release-upgrades 将 Prompt 设置为 lts: Promptlts 保存并退出 step5. sudo do-r…...

FreeRTOS学习笔记-基于stm32(14)内存管理

一、FreeRTOS 内存管理简介 FreeRTOS有两种方法来创建任务,队列,信号量等,一种动态一种静态。静态方法需要手动定义任务堆栈。使用动态内存管理的时候 FreeRTOS 内核在创建任务、队列、信号量的时候会动态的申请 RAM。 我们在移植FreeRTOS时可…...

关于Lambert W函数

来源:R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On Lambert’s W function,” Adv. Comput. Math., vol. 5, pp. 329–359, May 1996, doi: 10.1007/BF02124750. 摘要 Lambert W函数被定义为函数 w ↦ w e w w \mapsto we^…...

【免杀】C2远控-APC注入-进程镂空

目录 进程镂空&傀儡进程(主要过内存扫描)代码 傀儡进程演示如何上线上线演示 APC注入&进程欺骗(主要过内存扫描)同步调用与异步调用代码演示 进程镂空&傀儡进程(主要过内存扫描) 进程镂空(Pro…...

20240611 讯飞JAVA工程师(研发经理岗)面试

1.线程安全的集合类 在Java中,一些线程安全的集合类有Stack、Vector、Properties、Hashtable等 2.线程池中execute和submit的区别 1)参数及返回值不同 excute只能提交Runnable,无返回值 submit既可以提交Runnable,返回值为null&am…...

【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

文章目录 前言 背景介绍 初始算法 优化算法 分析和应用 总结 前言 见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》 见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》 背景介绍 在一个嵌入式软件开发项目中,需要开…...

go语言接口之http.Handler接口

package httptype Handler interface {ServeHTTP(w ResponseWriter, r *Request) }func ListenAndServe(address string, h Handler) error ListenAndServe函数需要一个例如“localhost:8000”的服务器地址,和一个所有请求都可以分 派的Handler接口实例。它会一直运…...

R语言 | 使用最简单方法添加显著性ggpubr包

本期教程原文:使用最简单方法添加显著性ggsignif包 本期教程 获得本期教程代码和数据,在后台回复关键词:20240605 小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组下游…...

【Linux】shell脚本变量——系统变量、环境变量和用户自定义变量

系统变量 系统变量是由系统预设的,它们通常在系统启动时被加载,并对所有用户和所有shell实例都有效。这些变量通常控制着系统的行为和配置,例如PATH(命令搜索路径)、HOME(用户主目录)等。系统变…...

QWidget 属性——windowTitle·windowIcon·qrc

🐌博主主页:🐌​倔强的大蜗牛🐌​ 📚专栏分类:QT ❤️感谢大家点赞👍收藏⭐评论✍️ 文章目录 一、windowTitle二、windowIcon三、qrc 一、windowTitle windowTitle 是一个通常用于表示窗口标题…...

深入理解rtmp(一)之开发环境搭建

深入理解rtmp(一)之开发环境搭建 手机直播在15年的时候突然火起来,随着花椒,映客等出现,直播一下就出现在了风口,各个公司针对直播的战斗迅速打响,战斗过程比较短暂,随着许多公司的退出和死去,手机直播行业趋于稳定,直播服务时长也被传统的CDN厂商牢牢占据,后面大家又把精力投…...

java常用面试基础题

&与&&区别? &和&&都是逻辑运算符,都是判断两边同时真则为真,否则为假;但是&&当第一个条件不成之后,后面的条件都不执行了,而&则还是继续执行,直到整个条件…...

互联网摸鱼日报(2024-06-11)

互联网摸鱼日报(2024-06-11) 36氪新闻 雅诗兰黛,胆子也太大了 苹果WWDC终极前瞻:5大看点20大AI新功能,库克不能输的一战 瑞士清洁科技公司Enerdrape开发预制地热板,回收城市地下空间的浅层地热能和废热用于建筑物制热或制冷 | …...

中介子方程十二

X$XFX$XEXyXαXiX$XαXiXrXkXtXyX$XpXVX$XVXpX$XyXtXkXrXiXαX$XiXαXyXEX$XFX$XEXyXαXiX$XαXiXrXkXtXyX$XpXVX$XVXpX$XyXtXkXrXiXαX$XiXαXyXEX$XαXηXtXαX$XWXyX$XyXWX$XpXαXqXηX$XeXαXhX$XdX$XpX$XdX$XyXeXαX$XEXyXαXiX$XαXiXrXkXtXyX$XpXVX$XVXpX$XyXtXkXrXiXα…...

SLT简介【简单介绍SLT】

SLT简介 在c的学习当中STL的学习是一个很重要的一环,但是STL又是一个庞大的章节,因此这里我们先简单介绍一下STL,有助于后面我们对STL的学习,这里就是做一个简单的介绍,并无干货。 1.什么是STL STL(standard templa…...

vue实现pdf下载——html2canvas

html2canvas 官方文档https://html2canvas.hertzen.com/getting-started html2canvas 的原理是通过遍历DOM树,将每一个HTML元素转化为Canvas对象,并叠加到一起形成一张完整的图片或者PDF文件。 1. 安装插件 npm install html2canvas jspdf --save 2.使用(页面已经…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理&#xff1a…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...