图的遍历介绍
概念

特点
无论是进行哪种遍历,均需要通过设置辅助数组标记顶点是否被访问来避免重复访问!!!!

类型

深度优先遍历
可以实现一次遍历访问一个连通图中的所有顶点,只要连通就能继续向下访问。
因此,深度递归次数就是图中连通分量数。

遍历过程
类似树的先根遍历,先访问结点,再访问与其邻接的第一个结点。

示例

遍历邻接矩阵表示图的实现


效率分析

非连通图的遍历

广度优先搜索
遍历过程
类似于树的层序遍历,先访问结点,再访问与结点邻接的所有结点。

非连通图的遍历

遍历邻接表表示图的实现


效率分析


DFS其底层是借助一个递归工作栈实现的。
而BFS是借助一个辅助队列实现的。
时间复杂度只与存储结构有关!!!!!
代码整合
#include <iostream>
#define maxn 100
#define infi 333333
using namespace std;
int visit[maxn]={0};
//邻接矩阵:顶点数+边数+顶点表(一维)+边表(二维)
typedef struct node{int vnum,arcnum;char vexs[maxn];int acr[maxn][maxn];
}adjgraph;
//邻接表:顶点数+边数+顶点表==>顶点类型:顶点信息+第一条边==> 边类型:顶点编号+权值+下一条边
typedef struct acrnode{int num;int weigh;acrnode *nextacr;
}acrnode;
typedef struct vexnode{char vex;acrnode *firstacr;
}vexnode;
typedef struct node{int vnum,acrnum;vexnode vexs[maxn];
}listgraph;//深度遍历
//递归实现:传入图与起点,不断调用自身
//用邻接矩阵实现
void dfs1(adjgraph g,int v){ cout<<v<<endl;visit[v]=1;for(int i=0;i<g.vnum;i++){if(visit[i]==0&&acr[v][i]!=infi)dfs(g,i);}
}
//用邻接表实现
void dfs2(listgraph l,int v){acrnode edge;vexnode vex; cout<<v<<endl;visit[v]=1;for(edge=l.vexs[v].firstacr;edge;edge=edge.nextacr){//遍历与v相连的所有边-有边 vex=l.vexs;//记录结点if(!visit[vex]) //且未被访问 dfs(l,vex);//访问结点 }
}//非递归实现:通过栈实现
//1.初始栈和标志数组
//2.起点元素入栈,
//3.栈非空:出栈访问,遍历下一条邻接边,未被访问时入栈,取下一个邻接结点
stack<int> s
void dfs(adjgraph g,int v){//邻接矩阵实现 int t;initstack(s);push(s,v);while(!empty(s)){t=pop(s,v);if(!visit[t]){cout<<t<<endl;visit[t]=1;}for(int i=0;i<g.vnum;i++){if(g.arcnum[v][i]!=infi&&(!visit[i])){push(s,i);}}}
}//广度遍历
1.初始队列与标记数组
2.起点元素入队,
3.队非空:出队,遍历边,未被访问时访问入队
void bfs(listgraph l,int v) {//用队列实现acrnode w;cout<<v<<endl;visit[v]=1;init(q); enqueue(q,v);while(!isempty(q)) {dequeue(q,v);for(w=l.vexs[v].firstacr;w;w=w.nextacr)//遍历邻接的所有边 {if(!visit[w]){cout<<w<<endl;visit[w]=1;enqueue(q,w);}}}
}
相关文章:
图的遍历介绍
概念 特点 无论是进行哪种遍历,均需要通过设置辅助数组标记顶点是否被访问来避免重复访问!!!! 类型 深度优先遍历 可以实现一次遍历访问一个连通图中的所有顶点,只要连通就能继续向下访问。 因此&#x…...
实验二、网络属性设置《计算机网络》
精神状态 be like:边写边崩溃,越写越得劲儿。 目录 一、实验目的: 二、实验内容 三、实验步骤: 四、实验小结 一、实验目的: 掌握 IP 地址、子网掩码等网络属性的设置。 二、实验内容 预备知识: 1、…...
【Python数据魔术】:揭秘类型奥秘,赋能代码创造
文章目录 🚀一.运算符🌈1. 算术运算符🌈2. 身份运算符🌈3. 成员运算符⭐4. 增量运算符⭐5. 比较运算符⭐6. 逻辑运算符 🚀二.可变与不可变🚀三.字符串转义🚀四.编码与解码💥1. 基础使…...
Android Glide loading Bitmap from RESOURCE_DISK_CACHE slow,cost time≈2 seconds+
Android Glide loading Bitmap from RESOURCE_DISK_CACHE slow,cost time≈2 seconds 加载一张宽高约100px多些的小图,是一张相当小的正常图片,loading Bitmap from RESOURCE_DISK_CACHE竟然耗时达到惊人的3秒左右!(打开Glide调试…...
微调技术:人工智能领域的神奇钥匙
在人工智能的浪潮中,深度学习技术凭借其强大的数据处理和学习能力,已成为推动科技进步的重要引擎。然而,深度学习模型的训练往往需要大量的数据和计算资源,这在某些特定场景下成为了限制其发展的瓶颈。为了解决这个问题࿰…...
MyBatis 参数上的处理的细节内容
1. MyBatis 参数上的处理的细节内容 文章目录 1. MyBatis 参数上的处理的细节内容2. MyBatis 参数上的处理3. 准备工作4. 单个(一个)参数4.1 单个(一个)简单类型作为参数4.2 单个(一个) Map集合 作为参数4.3 单个(一个) 实体类POJO作为参数 5. 多个参数5.1 Param注解(命名参数)…...
水帘降温水温
不同环境下的水帘啊,使用水温是不一样的,夏天使用水疗的水有两种,一个是常温的循环水,20~26左右,另外一个呢,就是深井水,重点是啥呢?就是无论我们用哪一种,能够把温度降到…...
kafka如何保证消息不丢失
Kafka发送消息是异步发送的,所以我们不知道消息是否发送成功,所以会可能造成消息丢失。而且Kafka架构是由生产者-服务器端-消费者三种组成部分构成的。要保证消息不丢失,那么主要有三种解决方法。 生产者(producer)端处理 生产者默认发送消息…...
流媒体学习之路(WebRTC)——音频NackTracker优化思路(8)
流媒体学习之路(WebRTC)——音频NackTracker优化思路(8) —— 我正在的github给大家开发一个用于做实验的项目 —— github.com/qw225967/Bifrost目标:可以让大家熟悉各类Qos能力、带宽估计能力,提供每个环节关键参数调节接口并实…...
Java基础面试重点-2
21. JVM是如何处理异常(大概流程)? 如果发生异常,方法会创建一个异常对象(包括:异常名称、异常描述以及异常发生时应用程序的状态),并转交给JVM。创建异常对象,并转交给…...
【活动文章】通用大模型VS垂直大模型,你更青睐哪一方
垂直大模型和通用大模型各有其特定的应用场景和优势。垂直大模型专注于特定领域,提供深度的专业知识和技能,而通用大模型则具备广泛的适用性和强大的泛化能力。以下是一些垂直大模型和通用大模型的例子: 垂直大模型 BERT-Financial…...
记录一个Qt调用插件的问题
问题背景 使用Qt主程序插件的方式开发,即主程序做成一个框,定义好插件接口,然后主程序上通过插件接口与插件进行交互。调试过程中遇到了两个问题,在这里记录一下。 问题1(信号槽定义) 插件与主程序之间&am…...
9.1 Go 接口的定义
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
易于上手的requests
Python中的requests库主要用于发送HTTP请求并获取响应结果。在现代网络编程中,HTTP请求是构建客户端与服务器之间通信的基础。Python作为一种高级编程语言,其丰富的库支持使得它在网络数据处理领域尤为突出。其中,requests库以其简洁、易用的…...
【QT Creator软件】解决中文乱码问题
QT Creator软件解决中文乱码问题 问题描述:Qtcreator安装好后打印中文在控制台输出乱码 在网上也查找了修改编辑器的默认编码为UTF-8,但是仍然没有任何作用,于是有了以下的解决方案 原因剖析:因为项目的编码与控制台的编码不一致…...
边缘网关在智能制造工厂中的创新应用及效果-天拓四方
在数字化浪潮席卷之下,智能制造工厂正面临着前所未有的数据挑战与机遇。边缘网关,作为数据处理与传输的关键节点,在提升工厂运营效率、确保数据安全方面发挥着日益重要的作用。本文将通过一个具体案例,详细阐述边缘网关在智能制造…...
Django-filter
准备工作 首先,确保你已经安装了django-filter包。如果没有,请使用以下命令安装: pip install django-filter然后,在你的settings.py文件中添加django_filters到INSTALLED_APPS列表中: INSTALLED_APPS [# ...djang…...
文字悬停效果
文字悬停效果 效果展示 CSS 知识点 CSS 变量使用回顾-webkit-text-stroke 属性的运用与回顾 页面整体结构实现 <ul><li style"--clr: #e6444f"><a href"#" class"text">First</a></li><li style"--cl…...
[SWPUCTF 2022 新生赛]ez_1zpop(php反序列化之pop链构造)
[SWPUCTF 2022 新生赛]ez_ez_unserialize <?php class X {public $x __FILE__;function __construct($x){$this->x $x; }function __wakeup(){if ($this->x ! __FILE__) {$this->x __FILE__; }}function __destruct(){highlight_file($this->x);//flag is…...
2-1基于matlab的拉普拉斯金字塔图像融合算法
基于matlab的拉普拉斯金字塔图像融合算法,可以使部分图像模糊的图片清楚,也可以使图像增强。程序已调通,可直接运行。 2-1 图像融合 拉普拉斯金字塔图像融合 - 小红书 (xiaohongshu.com)...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
