当前位置: 首页 > news >正文

【数据结构】双向链表(C语言)

哈喽铁子们,这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识,下面正式开始。

1. 双向链表的结构

注意:这里的“带头”跟前面我们说的“头节点”是两个概念,实际前面的在单链表阶段称呼不严
谨,但是为了老铁们更好的理解就直接称为单链表的头节点。
带头链表里的头节点,实际为“哨兵位”,哨兵位节点不存储任何有效元素,只是站在这⾥“放哨
的”。而“哨兵位”存在的意义: 遍历循环链表避免死循环。

2. 双向链表的实现

以尾插为例:

第一步:assert(phead); 防止为空。

第二步:创建新节点,和单链表一样用LTBuyNode()函数即可。

第三步:先将新节点指向原链表,由双向链表的特性,我们就不需要像单链表一样遍历去找。newnode->prev即为上图的d3。

       (1) newnode->prev = phead->prev;先将新节点的头部指向原链表的最后一个节点,即d3。

       (2) newnode->next = phead;而后将新节点的尾部指向原链表的哨兵位。

第四步:将原链表相应的位置指向新节点

       (1)phead->prev->next = newnode;原链表的最后节点尾部指向新节点

       (2)phead->prev = newnode;原链表的哨兵位头部指向新节点

//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead phead->prev newnodenewnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;
}

只要理清楚双向链表节点的指向关系,之后和单链表结构相似。

双链表的代码如下: 

//List.c
#include"List.h"void LTPrint(LTNode* phead)
{LTNode* pcur = phead->next;while (pcur != phead){printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}//申请节点
LTNode* LTBuyNode(LTDataType x)
{LTNode* node = (LTNode*)malloc(sizeof(LTNode));if (node == NULL){perror("malloc fail!");exit(1);}node->data = x;node->next = node->prev = node;return node;
}
//初始化
//void LTInit(LTNode** pphead)
//{
//	//给双向链表创建一个哨兵位
//	*pphead = LTBuyNode(-1);
//}
LTNode* LTInit()
{LTNode* phead = LTBuyNode(-1);return phead;
}//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead phead->prev newnodenewnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;
}//头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead newnode phead->nextnewnode->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;
}//尾删
void LTPopBack(LTNode* phead)
{//链表必须有效且链表不能为空(只有一个哨兵位)assert(phead && phead->next != phead);LTNode* del = phead->prev;//phead del->prev deldel->prev->next = phead;phead->prev = del->prev;//删除del节点free(del);del = NULL;
}//头删
void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->next;//phead del del->nextphead->next = del->next;del->next->prev = phead;//删除del节点free(del);del = NULL;
}LTNode* LTFind(LTNode* phead, LTDataType x)
{LTNode* pcur = phead->next;while (pcur != phead){if (pcur->data == x){return pcur;}pcur = pcur->next;}//没有找到return NULL;
}//在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);//pos newnode pos->nextnewnode->next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}//删除pos节点
void LTErase(LTNode* pos)
{//pos理论上来说不能为phead,但是没有参数phead,无法增加校验assert(pos);//pos->prev pos pos->nextpos->next->prev = pos->prev;pos->prev->next = pos->next;free(pos);pos = NULL;
}void LTDesTroy(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){LTNode* next = pcur->next;free(pcur);pcur = next;}//此时pcur指向phead,而phead还没有被销毁free(phead);phead = NULL;
}
//List.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>//定义节点的结构
//数据 + 指向下一个节点的指针
typedef int SLTDataType;typedef struct SListNode {SLTDataType data;struct SListNode* next;
}SLTNode;void SLTPrint(SLTNode* phead);//尾插
void SLTPushBack(SLTNode** pphead, SLTDataType x);
//头插
void SLTPushFront(SLTNode** pphead, SLTDataType x);
//尾删
void SLTPopBack(SLTNode** pphead);
//头删
void SLTPopFront(SLTNode** pphead);//查找
SLTNode* SLTFind(SLTNode* phead, SLTDataType x);//在指定位置之前插入数据
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//在指定位置之后插入数据
void SLTInsertAfter(SLTNode* pos, SLTDataType x);//删除pos节点
void SLTErase(SLTNode** pphead, SLTNode* pos);
//删除pos之后的节点
void SLTEraseAfter(SLTNode* pos);//销毁链表
void SListDesTroy(SLTNode** pphead);

 3. 顺序表和双向链表的优缺点分析

不同点
顺序表
链表(单链表)
存储空间上
物理上⼀定连续
逻辑上连续,但物理上不⼀定连续
随机访问
⽀持O(1)
不⽀持:O(N)
任意位置插⼊或者删除元素
可能需要搬移元素,效率低O(N)
只需修改指针指向
插⼊
动态顺序表,空间不够时需要扩容
没有容量的概念
应⽤场景
元素⾼效存储+频繁访问
任意位置插⼊和删除频繁

在接下来我们将会学习利用实现贪吃蛇小游戏等有意思的东西,如果本篇有不理解的地方,欢迎私信我或在评论区指出,期待与你们共同进步。创作不易,望各位大佬一键三连!

相关文章:

【数据结构】双向链表(C语言)

哈喽铁子们&#xff0c;这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识&#xff0c;下面正式开始。 1. 双向链表的结构 注意&#xff1a;这里的“带头”跟前面我们说的“头节点”是两个概念&#xff0c;实际前面的在单链表阶段称呼不严 谨&#xff0c;但是为了老…...

【TensorFlow深度学习】WGAN与DCGAN在图像生成中的应用实例

WGAN与DCGAN在图像生成中的应用实例 WGAN与DCGAN在图像生成中的应用实例&#xff1a;一场深度学习的视觉盛宴DCGAN简介WGAN简介应用实例&#xff1a;基于DCGAN的图像生成应用实例&#xff1a;WGAN的图像生成实践结语 WGAN与DCGAN在图像生成中的应用实例&#xff1a;一场深度学习…...

垫付商贩任务补单平台补单系统网站源码提供

垫付商贩任务补单平台补单系统网站源码提供...

vue富文本wangeditor加@人功能(vue2 vue3都可以)

依赖 "wangeditor/editor": "^5.1.23", "wangeditor/editor-for-vue": "^5.1.12", "wangeditor/plugin-mention": "^1.0.0",RichEditor.vue <template><div style"border: 1px solid #ccc; posit…...

######## redis各章节终篇索引(更新中) ############

其他 父子关系&#xff08;ctx、协程&#xff09;#### golang存在的父子关系 ####_子goroutine panic会导致父goroutine挂掉吗-CSDN博客 参数传递&#xff08;slice、map&#xff09;#### go中参数传递&#xff08;涉及&#xff1a;切片slice、map、channel等&#xff09; ###…...

一个基于MySQL的数据库课程设计的基本框架

数据库课程设计&#xff08;MySQL&#xff09;通常涉及多个步骤&#xff0c;以确保数据库的有效设计、实现和维护。以下是一个基于MySQL的数据库课程设计的基本框架&#xff0c;结合参考文章中的相关信息进行整理&#xff1a; ### 一、引言 * **背景**&#xff1a;简要介绍为…...

架构设计基本原则

开闭原则 开闭原则&#xff08;Open Closed Principle&#xff0c;OCP&#xff09;是面向对象编程&#xff08;OOP&#xff09;中的一个核心原则&#xff0c;主要强调的是软件实体&#xff08;类、模块、函数等&#xff09;应该对扩展开放&#xff0c;对修改封闭。 解释&…...

云原生应用开发培训,开启云计算时代的新征程

在云计算时代&#xff0c;云原生应用开发技术已经成为IT领域的热门话题。如果您想要转型至云原生领域&#xff0c;我们的云原生应用开发培训将帮助您开启新征程。 我们的课程内容涵盖了云原生技术的基础概念、容器技术、微服务架构、持续集成与持续发布&#xff08;CI/CD&#…...

【数据库设计】宠物商店管理系统

目录 &#x1f30a;1 问题的提出 &#x1f30a;2 需求分析 &#x1f30d;2.1 系统目的 &#x1f30d;2.2 用户需求 &#x1f33b;2.2.1 我国宠物行业作为新兴市场&#xff0c;潜力巨大 &#x1f33b;2.2.2 我国宠物产品消费规模逐年增大 &#x1f33b;2.2.3 我国宠物主选…...

前端 JS 经典:node 的模块查找策略

前言&#xff1a;我们引入模块后&#xff0c;node 大概的查找步骤分为 文件查找、文件夹查找、内置模块查找、第三方模块查找&#xff0c;在 node 中使用 ESM 模块语法&#xff0c;需要创建 package.json 文件&#xff0c;并将 type 设置为 module。简单起见&#xff0c;我们用…...

C++中的23种设计模式

目录 摘要 创建型模式 1. 工厂方法模式&#xff08;Factory Method Pattern&#xff09; 2. 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09; 3. 单例模式&#xff08;Singleton Pattern&#xff09; 4. 生成器模式&#xff08;Builder Pattern&#xff0…...

vue.js+node.js+mysql在线聊天室源码

vue.jsnode.jsmysql在线聊天室源码 技术栈&#xff1a;vue.jsElement UInode.jssocket.iomysql vue.jsnode.jsmysql在线聊天室源码...

浏览器无痕模式和非无痕模式的区别

无痕模式 1. 历史记录&#xff1a;在无痕模式下&#xff0c;浏览器不会保存浏览记录、下载记录、表单数据和Cookies。当你关闭无痕窗口后&#xff0c;这些信息都会被删除。
 2. Cookies&#xff1a;无痕模式会在会话期间临时存储Cookies&#xff0c;但在关闭无痕窗口…...

WPF框架,修改ComboBox控件背景色 ,为何如此困难?

直接修改Background属性不可行 修改控件背景颜色&#xff0c;很多人第一反应便是修改Background属性&#xff0c;但是修改过后便会发现&#xff0c;控件的颜色没有发生任何变化。 于是在网上搜索答案&#xff0c;便会发现一个异常尴尬的情况&#xff0c;要么就行代码简单但是并…...

Diffusers代码学习: 文本引导深度图像生成

StableDiffusionDepth2ImgPipeline允许传递文本提示和初始图像&#xff0c;以调节新图像的生成。此外&#xff0c;还可以传递depth_map以保留图像结构。如果没有提供depth_map&#xff0c;则管道通过集成的深度估计模型自动预测深度。 # 以下代码为程序运行进行设置 import o…...

网络的下一次迭代:AVS 将为 Web2 带去 Web3 的信任机制

撰文&#xff1a;Sumanth Neppalli&#xff0c;Polygon Ventures 编译&#xff1a;Yangz&#xff0c;Techub News 本文来源香港Web3媒体&#xff1a;Techub News AVS &#xff08;主动验证服务&#xff09;将 Web2 的规模与 Web3 的信任机制相融合&#xff0c;开启了网络的下…...

OpenCV 的模板匹配

OpenCV中的模板匹配 模板匹配&#xff08;Template Matching&#xff09;是计算机视觉中的一种技术&#xff0c;用于在大图像中找到与小图像&#xff08;模板&#xff09;相匹配的部分。OpenCV提供了多种模板匹配的方法&#xff0c;主要包括基于相关性和基于平方差的匹配方法。…...

26.0 Http协议

1. http协议简介 HTTP(Hypertext Transfer Protocol, 超文本传输协议): 是万维网(WWW: World Wide Web)中用于在服务器与客户端(通常是本地浏览器)之间传输超文本的协议.作为一个应用层的协议, HTTP以其简洁, 高效的特点, 在分布式超媒体信息系统中扮演着核心角色. 自1990年提…...

IO流打印流

打印流 IO流打印流是Java中用来将数据打印到输出流的工具。打印流提供了方便的方法来格式化和输出数据&#xff0c;可以用于将数据输出到控制台、文件或网络连接。 分类:打印流一般是指:PrintStream&#xff0c;PrintWriter两个类 特点1:打印流只操作文件目的地&#xff0c;…...

Cohere reranker 一致的排序器

这本notebook展示了如何在检索器中使用 Cohere 的重排端点。这是在 ContextualCompressionRetriever 的想法基础上构建的。 %pip install --upgrade --quiet cohere %pip install --upgrade --quiet faiss# OR (depending on Python version)%pip install --upgrade --quiet…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...