当前位置: 首页 > news >正文

省市县选择三级联动(使用高德API实现)

省市县选择如果自己实现是比较麻烦的,最近发现可以使用高德实现省市县联动选择,实现后来记录一下供大家参考。

文章目录

      • 最终效果:
      • 一、准备工作
      • 二、完整页面代码

最终效果:

实现单次点击获取省市县名称,选择完成后返回获取省市县数组
在这里插入图片描述

一、准备工作

高德API平台申请自己的key,申请的类型为Web服务
在这里插入图片描述

二、完整页面代码

主要实现在于 通过发送高德api请求:
https://restapi.amap.com/v3/config/district?keywords=&subdistrict=3&extensions=base&key=你的key
获取到所有的省市县数据
通过代码处理后,放到Element UI的级联选择组件中

<template><div><!-- 引入Element UI Cascader组件 --><el-cascaderfilterableplaceholder="请选择"ref="addPoint":props="cityProps":options="cityOptions"clearable@active-item-change="handleActiveItemChange"@change="handleChange"v-model="selectedOptions"></el-cascader></div>
</template><script>import axios from 'axios';export default {data() {return {selectedArea: [],provinceList: [],CITY: [],XIAN: [],/*获取数据的url key需要自己到高德地图申请*/url: 'https://restapi.amap.com/v3/config/district?keywords=&subdistrict=3&extensions=base&key=自己的key',/*选项列表*/cityOptions: [],/*选项列表格式*/cityProps: {value: 'name',label: 'name',children: 'districts',},selectedOptions: null, //选中的数据};},methods: {/* 获取省市区选项 */getCity() {axios.get(this.url, null).then((res) => {console.log(res)this.cityOptions = this.getTreeData(res.data.districts[0].districts)})},/* 递归处理末尾项district为0的空项 */getTreeData(data) {// 循环遍历返回的数据for (var i = 0; i < data.length; i++) {if (data[i].districts.length < 1) {// districts若为空数组,则将districts设为undefineddata[i].districts = undefined} else {// districts若不为空数组,则继续 递归调用 本方法this.getTreeData(data[i].districts)}}return data},handleActiveItemChange(seleted){console.log(seleted,"handleActiveItemChange-----")},handleChange(seleted){console.log(seleted,"handleChange-----")}},created() {this.getCity();},};
</script>

相关文章:

省市县选择三级联动(使用高德API实现)

省市县选择如果自己实现是比较麻烦的&#xff0c;最近发现可以使用高德实现省市县联动选择&#xff0c;实现后来记录一下供大家参考。 文章目录 最终效果&#xff1a;一、准备工作二、完整页面代码 最终效果&#xff1a; 实现单次点击获取省市县名称&#xff0c;选择完成后返回…...

【数据结构(邓俊辉)学习笔记】图06——最小支撑树

文章目录 0. 概述1. 支撑树2. 最小支撑树3. 歧义性4. 蛮力算法5. Prim算法5.1 割与极短跨越边5.2 贪心迭代5.3 实例5.4 实现5.5 复杂度 0. 概述 学习下最小支撑树和prim算法。 1. 支撑树 最小的连通图是树。 连通图G的某一无环连通子图T若覆盖G中所有的顶点&#xff0c;则称…...

海豚调度清理:使用 API 轻松清理历史工作流实例以及日志文件

&#x1f4a1; 本系列文章是 DolphinScheduler 由浅入深的教程&#xff0c;涵盖搭建、二开迭代、核心原理解读、运维和管理等一系列内容。适用于想对 DolphinScheduler了解或想要加深理解的读者。 祝开卷有益。 大数据学习指南 大家好&#xff0c;我是小陶&#xff0c;DolphinS…...

python怎么显示行号

我们如果想让Python IDLE显示行号&#xff0c;我们可以通过扩展IDLE功能来做到。 1.我们需要下载一个LineNumber.py扩展。 2.我们打开Python安装目录&#xff0c;找到安装目录下的Lib\idlelib目录&#xff0c;复制LineNumber到这个目录。 3.然后启动扩展。 4.配置扩展的方式…...

pytorch中,load_state_dict和torch.load的区别?

在 PyTorch 中&#xff0c;load_state_dict 和 torch.load 是两个不同的函数&#xff0c;用于不同的目的。 torch.load: 用途: 从磁盘加载一个保存的对象。这个对象可以是一个模型的整个状态字典&#xff08;包含模型参数&#xff09;、优化器状态字典、甚至是任意其他 Python …...

ObjectARX打印当前图纸为PDF,无延迟(亲测有效)

CAD二次开发定制ObjectARX安装配置AutoCAD插件ZWCAD插件C++ //----------------------------------------------------------------------------- //----- acrxEntryPoint.cpp //----------------------------------------------------------------------------- #include &quo…...

torch.squeeze() dim=1 dim=-1 dim=2

对数据的维度进行压缩 使用方式&#xff1a;torch.squeeze(input, dimNone, outNone) 将输入张量形状中的1 去除并返回。 如果输入是形如(A1B1C1D)&#xff0c;那么输出形状就为&#xff1a; (ABCD) import torch x torch.rand(2, 1, 1, 3, 1, 4) print(x) print(x.shape) …...

智慧环保一体化平台简介

据悉&#xff0c;环保问题日益受到人们的关注&#xff0c;智慧环保一体化平台作为解决环保问题的有力工具&#xff0c;正逐渐走进人们的视野。朗观视觉智慧环保一体化平台通过整合各类环保资源&#xff0c;实现环境数据的实时监测、分析与管理&#xff0c;为环境保护提供智能化…...

idea在空工程中添加新模块并测试的步骤

ServicesTest是空的工程&#xff0c;没有pom文件。现在需要在ServicesTest目录下添加新模块作为新的工程&#xff0c;目的是写一下别的技术功能。 原先目录结构&#xff0c;ServicesTest是空的工程&#xff0c;没有pom文件。下面的几个模块是新的工程&#xff0c;相互独立。 1.…...

HCIE-QOS基本原理

QOS基本原理 QOS概述什么是QOSQoS服务模型区分服务模型QoS常用技术 (DiffServ模型)QoS数据处理流程 (DiffServ模型) QoS流分类和流标记QoS数据处理流程为什么需要流分类和流标记 简单流分类外部优先级 - VLAN报文外部优先级 - MPLS报文外部优先级 - IP报文各外部优先级间的对应…...

pycharm基本使用(常用快捷键)

0.下载 pycharm官网下载 选择合适的版本&#xff0c;本文以2024.1为例 1.简单应用 常用快捷键 ctrlD 复制当前行 ctrlY 删除当前行 ctrlX 剪切当前行&#xff08;可用作删除&#xff0c;更顺手&#xff09; shift↑ 选中多行ctrlshiftF10 运行 shiftF9 调试ctrl/ 注释当前…...

机器学习--回归模型和分类模型常用损失函数总结(详细)

文章目录 引言 回归模型常用损失函数均方误差&#xff08;Mean Squared Error, MSE&#xff09;均方根误差&#xff08;Root Mean Squared Error, RMSE&#xff09;平均绝对误差&#xff08;Mean Absolute Error, MAE&#xff09;Huber损失&#xff08;Huber Loss&#xff09; …...

企业选择数字工厂管理系统供应商的标准是什么

随着信息技术的飞速发展&#xff0c;数字化转型已成为企业提升竞争力、实现可持续发展的必由之路。在制造业领域&#xff0c;数字工厂管理系统实现生产流程自动化、智能化的关键工具&#xff0c;其选择的重要性不言而喻。本文将从多个维度探讨企业选择数字工厂管理系统供应商的…...

京准电钟|基于纳秒级的GPS北斗卫星授时服务器

京准电钟&#xff5c;基于纳秒级的GPS北斗卫星授时服务器 京准电钟&#xff5c;基于纳秒级的GPS北斗卫星授时服务器 你有没有思考过这样一个问题&#xff1a;火车站内&#xff0c;熙熙攘攘&#xff0c;旅客排队进站、列车停靠发车&#xff0c;一切井然有序。一旦有个别时间出现…...

Flutter知识点

Dart语言基础知识 Dart特性&#xff1a; Dart 是少数同时支持 JIT&#xff08;Just In Time&#xff0c;即时编译&#xff09;和 AOT&#xff08;Ahead of Time&#xff0c;运行前编译&#xff09;的语言之一。语言在运行之前通常都需要编译&#xff0c;JIT 和 AOT 则是最常见…...

2024-06-12 问AI: 在大语言模型中,什么是Jailbreak漏洞?

文心一言 在大语言模型中&#xff0c;Jailbreak漏洞&#xff08;也称为越狱攻击或指令注入攻击&#xff09;是一种特定的安全漏洞&#xff0c;它允许用户或攻击者通过精心设计的输入或指令&#xff0c;绕过模型的安全限制&#xff0c;诱导模型产生原本被设定为禁止或限制的输出…...

Vue22-v-model收集表单数据

一、效果图 二、代码 2-1、HTML代码 2-2、vue代码 1、v-model单选框的收集信息 v-model&#xff1a;默认收集的就是元素中的value值。 单选框添加默认值&#xff1a; 2、v-model多选框的收集信息 ①、多个选择的多选 注意&#xff1a; 此处的hobby要是数组&#xff01;&…...

【深度学习】深入解码:提升NLP生成文本的策略与参数详解

文章目录 解码策略解码参数公式解释代码例子区别 更详细的束搜索的解释更详细的例子解释第一步第二步第三步 解码策略和解码参数在自然语言处理&#xff08;NLP&#xff09;模型的生成过程中起着不同的作用&#xff0c;但它们共同决定了生成文本的质量和特性。 解码策略 解码…...

Petalinux由于网络原因产生的编译错误(2)--Fetcher failure:Unable to find file

1 Fetcher failure:Unable to find file 错误 如果编译工程遇到如下图所示的“Fetcher failure for URL”或相似错误 出现这种错误的原因是 Petalinux 在配置和编译的时候&#xff0c;需要联网下载一些文件&#xff0c;由于网 络原因这些文件不能正常下载&#xff0c;导致编译…...

随手记:商品信息过多,展开收起功能

UI原型图&#xff1a; 页面思路&#xff1a; 在商品信息最小item外面有一个包裹所有item的标签&#xff0c;控制这个标签的高度来实现展开收起功能 <!-- 药品信息 --><view class"drugs" v-if"inquiryInfoSubmitBtn"><view class"…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...