当前位置: 首页 > news >正文

优化改进YOLOv5算法之添加GIoU、DIoU、CIoU、EIoU、Wise-IoU模块(超详细)

目录

1、IoU

1.1 什么是IOU

 1.2 IOU代码

2、GIOU

2.1 为什么提出GIOU

2.2 GIoU代码

3 DIoU 

3.1 为什么提出DIOU

3.2 DIOU代码

4 CIOU

4.1 为什么提出CIOU

4.2 CIOU代码

5 EIOU

5.1 为什么提出EIOU 

5.2 EIOU代码

6 Wise-IoU

7 YOLOv5中添加GIoU、DIoU、CIoU、EIoU、Wise-IoU损失函数


1、IoU

1.1 什么是IOU

论文链接为:UnitBox: An Advanced Object Detection Network

IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。计算过程如下:

其中,绿色面积代表预测框B与真实框A的交集A\cap B;则

IOU=\frac{A\cap B}{A\cup B}

显而易见,IOU的值越高也说明预测框与真实框重合程度越高,代表模型预测越准确,反之,IOU越低模型性能越差。 

但是,IOU作为损失函数会出现以下问题:

  • 如果两个框没有相交,根据定义,IoU=0,不能度量IoU为零距离远近的程度。同时因为loss=0,没有梯度回传,无法进行学习训练。
  • IoU无法精确的反映两者的重合度大小。如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差。

 1.2 IOU代码

import numpy as np
def Iou(box1, box2, wh=False):if wh == False:xmin1, ymin1, xmax1, ymax1 = box1xmin2, ymin2, xmax2, ymax2 = box2else:xmin1, ymin1 = int(box1[0]-box1[2]/2.0), int(box1[1]-box1[3]/2.0)xmax1, ymax1 = int(box1[0]+box1[2]/2.0), int(box1[1]+box1[3]/2.0)xmin2, ymin2 = int(box2[0]-box2[2]/2.0), int(box2[1]-box2[3]/2.0)xmax2, ymax2 = int(box2[0]+box2[2]/2.0), int(box2[1]+box2[3]/2.0)# 获取矩形框交集对应的左上角和右下角的坐标(intersection)xx1 = np.max([xmin1, xmin2])yy1 = np.max([ymin1, ymin2])xx2 = np.min([xmax1, xmax2])yy2 = np.min([ymax1, ymax2])	# 计算两个矩形框面积area1 = (xmax1-xmin1) * (ymax1-ymin1) area2 = (xmax2-xmin2) * (ymax2-ymin2)inter_area = (np.max([0, xx2-xx1])) * (np.max([0, yy2-yy1])) #计算交集面积iou = inter_area / (area1+area2-inter_area+1e-6)  #计算交并比return iou

2、GIOU

论文链接:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

2.1 为什么提出GIOU

为了解决上面两个问题,这篇论文提出了GIOU。由于IoU是比值的概念,对目标物体的scale是不敏感的。然而目标检测任务中的BBox的回归损失(MSE loss, l1-smooth loss等)优化和IoU优化不是完全等价的,而且 Ln 范数对物体的scale也比较敏感,IoU无法直接优化没有重叠的部分。这篇论文提出可以直接把IoU设为回归的loss。

GIOU的计算很简单,对于两个bounding box A和B。我们可以算出其最小凸集(同时包含了预测框和真实框的最小框的面积)C,有了最小凸集,就可以计算GIOU,如下所示

从公式可以看出,GIOU有几个优点:

  • GIOU是IOU的下界,且取值范围为(-1, 1]。当两个框不重合时,IOU始终为0,不论A、B相隔多远,但是对于GIOU来说,A,B不重合度越高(离的越远),GIOU越趋近于-1。
  • GIOU其实就是在IOU的基础上减掉了一个东西,这个减掉的东西,避免了两个bbox不重合时Loss为0的情况;
  • 可导:这一点需要强调下,由于max,min,分段函数(比如ReLU)这些都是可导的,所以用1-GIOU作为Loss是可导的。
  • 与IoU只关注重叠区域不同,GIoU不仅关注重叠区域,还关注其他的非重合区域,能更好的反映两者的重合度。

但是GIOU同样存在一些问题,主要有:

  • 状态1、2、3都是预测框在目标框内部且预测框大小一致的情况,这时预测框和目标框的差集都是相同的,因此这三种状态的GIOU值也都是相同的,这时GIOU退化成了IOU,无法区分相对位置关系;
  • GIOU收敛较慢、回归不够准确。

2.2 GIoU代码

import numpy as npdef Giou_np(bbox_p, bbox_g):""":param bbox_p: predict of bbox(N,4)(x1,y1,x2,y2):param bbox_g: groundtruth of bbox(N,4)(x1,y1,x2,y2):return:"""# for details should go to https://arxiv.org/pdf/1902.09630.pdf# ensure predict's bbox formx1p = np.minimum(bbox_p[:, 0], bbox_p[:, 2]).reshape(-1,1)x2p = np.maximum(bbox_p[:, 0], bbox_p[:, 2]).reshape(-1,1)y1p = np.minimum(bbox_p[:, 1], bbox_p[:, 3]).reshape(-1,1)y2p = np.maximum(bbox_p[:, 1], bbox_p[:, 3]).reshape(-1,1)bbox_p = np.concatenate([x1p, y1p, x2p, y2p], axis=1)# calc area of Bgarea_p = (bbox_p[:, 2] - bbox_p[:, 0]) * (bbox_p[:, 3] - bbox_p[:, 1])# calc area of Bparea_g = (bbox_g[:, 2] - bbox_g[:, 0]) * (bbox_g[:, 3] - bbox_g[:, 1])# cal intersectionx1I = np.maximum(bbox_p[:, 0], bbox_g[:, 0])y1I = np.maximum(bbox_p[:, 1], bbox_g[:, 1])x2I = np.minimum(bbox_p[:, 2], bbox_g[:, 2])y2I = np.minimum(bbox_p[:, 3], bbox_g[:, 3])I = np.maximum((y2I - y1I), 0) * np.maximum((x2I - x1I), 0)# find enclosing boxx1C = np.minimum(bbox_p[:, 0], bbox_g[:, 0])y1C = np.minimum(bbox_p[:, 1], bbox_g[:, 1])x2C = np.maximum(bbox_p[:, 2], bbox_g[:, 2])y2C = np.maximum(bbox_p[:, 3], bbox_g[:, 3])# calc area of Bcarea_c = (x2C - x1C) * (y2C - y1C)U = area_p + area_g - Iiou = 1.0 * I / U# Giougiou = iou - (area_c - U) / area_c# loss_iou = 1 - iou loss_giou = 1 - giouloss_iou = 1.0 - iouloss_giou = 1.0 - gioureturn giou, loss_iou, loss_giou# def giou_tfif __name__ == '__main__':p = np.array([[21,45,103,172],[34,283,155,406],[202,174,271,255]])g = np.array([[59,106,154,230],[71,272,191,419],[257,244,329,351]])Giou_np(p, g)

3 DIoU 

论文连接:Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

3.1 为什么提出DIOU

一个好的目标框回归函数应该考虑三个重要几何因素:重叠面积、中心点距离,长宽比。

针对IOU和GIOU存在的问题,作者从两个方面进行考虑

  • 如何最小化预测框和目标框之间的归一化距离?
  • 如何在预测框和目标框重叠时,回归的更准确?

 针对第一个问题,提出了DIOU_Loss(Distance_IOU_Loss)

DIOU_Loss考虑了重叠面积中心点距离,当目标框包裹预测框的时候,直接度量2个框的距离,因此DIOU_Loss收敛的更快。DIOU损失的优点有:

  • 与GIoU loss类似,DIoU loss在与目标框不重叠时,仍然可以为边界框提供移动方向。
  • DIoU loss可以直接最小化两个目标框的距离,因此比GIoU loss收敛快得多。
  • 对于包含两个框在水平方向和垂直方向上这种情况,DIoU损失可以使回归非常快,而GIoU损失几乎退化为IoU损失。
  • DIoU还可以替换普通的IoU评价策略,应用于NMS中,使得NMS得到的结果更加合理和有效。

但DIOU同样存在缺点,那就是没有考虑到长宽比。比如下面三种情况,目标框包裹预测框,本来DIOU_Loss可以起作用。但预测框的中心点的位置都是一样的,因此按照DIOU_Loss的计算公式,三者的值都是相同的。

3.2 DIOU代码

def Diou(bboxes1, bboxes2):rows = bboxes1.shape[0]cols = bboxes2.shape[0]dious = torch.zeros((rows, cols))if rows * cols == 0:#return diousexchange = Falseif bboxes1.shape[0] > bboxes2.shape[0]:bboxes1, bboxes2 = bboxes2, bboxes1dious = torch.zeros((cols, rows))exchange = True# #xmin,ymin,xmax,ymax->[:,0],[:,1],[:,2],[:,3]w1 = bboxes1[:, 2] - bboxes1[:, 0]h1 = bboxes1[:, 3] - bboxes1[:, 1] w2 = bboxes2[:, 2] - bboxes2[:, 0]h2 = bboxes2[:, 3] - bboxes2[:, 1]area1 = w1 * h1area2 = w2 * h2center_x1 = (bboxes1[:, 2] + bboxes1[:, 0]) / 2 center_y1 = (bboxes1[:, 3] + bboxes1[:, 1]) / 2 center_x2 = (bboxes2[:, 2] + bboxes2[:, 0]) / 2center_y2 = (bboxes2[:, 3] + bboxes2[:, 1]) / 2inter_max_xy = torch.min(bboxes1[:, 2:],bboxes2[:, 2:]) inter_min_xy = torch.max(bboxes1[:, :2],bboxes2[:, :2]) out_max_xy = torch.max(bboxes1[:, 2:],bboxes2[:, 2:]) out_min_xy = torch.min(bboxes1[:, :2],bboxes2[:, :2])inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)inter_area = inter[:, 0] * inter[:, 1]inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2outer = torch.clamp((out_max_xy - out_min_xy), min=0)outer_diag = (outer[:, 0] ** 2) + (outer[:, 1] ** 2)union = area1+area2-inter_areadious = inter_area / union - (inter_diag) / outer_diagdious = torch.clamp(dious,min=-1.0,max = 1.0)if exchange:dious = dious.Treturn dious

4 CIOU

论文链接:Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

4.1 为什么提出CIOU

 CIOU论文考虑到bbox回归三要素中的长宽比还没被考虑到计算中,因此,进一步在DIoU的基础上提出了CIoU。其惩罚项如下面公式:

其中\alpha是权重函数,而\nu用来度量长宽比的相似性,定义为

 完整的CIOU损失函数定义:

4.2 CIOU代码

def bbox_overlaps_ciou(bboxes1, bboxes2):rows = bboxes1.shape[0]cols = bboxes2.shape[0]cious = torch.zeros((rows, cols))if rows * cols == 0:return ciousexchange = Falseif bboxes1.shape[0] > bboxes2.shape[0]:bboxes1, bboxes2 = bboxes2, bboxes1cious = torch.zeros((cols, rows))exchange = Truew1 = bboxes1[:, 2] - bboxes1[:, 0]h1 = bboxes1[:, 3] - bboxes1[:, 1]w2 = bboxes2[:, 2] - bboxes2[:, 0]h2 = bboxes2[:, 3] - bboxes2[:, 1]area1 = w1 * h1area2 = w2 * h2center_x1 = (bboxes1[:, 2] + bboxes1[:, 0]) / 2center_y1 = (bboxes1[:, 3] + bboxes1[:, 1]) / 2center_x2 = (bboxes2[:, 2] + bboxes2[:, 0]) / 2center_y2 = (bboxes2[:, 3] + bboxes2[:, 1]) / 2inter_max_xy = torch.min(bboxes1[:, 2:],bboxes2[:, 2:])inter_min_xy = torch.max(bboxes1[:, :2],bboxes2[:, :2])out_max_xy = torch.max(bboxes1[:, 2:],bboxes2[:, 2:])out_min_xy = torch.min(bboxes1[:, :2],bboxes2[:, :2])inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)inter_area = inter[:, 0] * inter[:, 1]inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2outer = torch.clamp((out_max_xy - out_min_xy), min=0)outer_diag = (outer[:, 0] ** 2) + (outer[:, 1] ** 2)union = area1+area2-inter_areau = (inter_diag) / outer_diagiou = inter_area / unionwith torch.no_grad():arctan = torch.atan(w2 / h2) - torch.atan(w1 / h1)v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w2 / h2) - torch.atan(w1 / h1)), 2)S = 1 - ioualpha = v / (S + v)w_temp = 2 * w1ar = (8 / (math.pi ** 2)) * arctan * ((w1 - w_temp) * h1)cious = iou - (u + alpha * ar)cious = torch.clamp(cious,min=-1.0,max = 1.0)if exchange:cious = cious.Treturn cious

5 EIOU

论文链接:Focal and Efficient IOU Loss for Accurate Bounding Box Regression

5.1 为什么提出EIOU 

CIOU Loss虽然考虑了边界框回归的重叠面积、中心点距离、纵横比。但是通过其公式中的v反映的纵横比的差异,而不是宽高分别与其置信度的真实差异,所以有时会阻碍模型有效的优化相似性,于是提出EIOU,它的主要思想是:

  •  一是认为CIoU loss对于长宽比加入loss的设计不太合理,于是将CIoU loss中反应长宽比一致性的部分替换成了分别对于长和宽的一致性loss,形成了EIoU loss。
  •         二是认为不太好的回归样本对回归loss产生了比较大的影响,回归质量相对较好的样本则难以进一步优化,所以论文提出Focal EIoU loss进行回归质量较好和质量较差的样本之间的平衡。

EIOU Loss优点:

  • 1)将纵横比的损失项拆分成预测的宽高分别与最小外接框宽高的差值,加速了收敛提高了回归精度。
  • 2)引入了Focal Loss优化了边界框回归任务中的样本不平衡问题,即减少与目标框重叠较少的大量锚框对BBox 回归的优化贡献,使回归过程专注于高质量锚框。

5.2 EIOU代码

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False,  EIoU=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsiou = inter / unionif GIoU or DIoU or CIoU or EIoU:cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif CIoU or DIoU or EIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredrho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squaredif DIoU:return iou - rho2 / c2  # DIoUelif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha = v / (v - iou + (1 + eps))return iou - (rho2 / c2 + v * alpha)  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = cw ** 2 + epsch2 = ch ** 2 + epsreturn iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)else:  # GIoU https://arxiv.org/pdf/1902.09630.pdfc_area = cw * ch + eps  # convex areareturn iou - (c_area - union) / c_area  # GIoUelse:return iou  # IoU

6 Wise-IoU

论文链接:Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

具体关于Wise-IoU损失的介绍请参考前期博客

优化改进YOLOv5算法之Wise-IOU损失函数_yolov5算法优化_AI追随者的博客-CSDN博客

7 YOLOv5中添加GIoU、DIoU、CIoU、EIoU、Wise-IoU损失函数

 yolov5-6.1版本中的iou损失函数是在utils/metrics.py文件定义的,在该文件添加以下关于GIoU、DIoU、CIoU、EIoU、Wise-IoU函数的代码,如下所示

import numpy as np
import torch, mathclass WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

然后在utils/loss.py文件中调用bbox_iou损失函数时,将对应的IOU设置为True即可。 

参考文章:【深度学习小知识】目标检测中的IOU、GIOU、DIOU、CIOU、EIOU等理论解析_你好啊:)的博客-CSDN博客 深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解 - 知乎

详解IoU、GIoU、DIoU、CIoU、EIoU和DIoU-NMS_小Aer的博客-CSDN博客

相关文章:

优化改进YOLOv5算法之添加GIoU、DIoU、CIoU、EIoU、Wise-IoU模块(超详细)

目录 1、IoU 1.1 什么是IOU 1.2 IOU代码 2、GIOU 2.1 为什么提出GIOU 2.2 GIoU代码 3 DIoU 3.1 为什么提出DIOU 3.2 DIOU代码 4 CIOU 4.1 为什么提出CIOU 4.2 CIOU代码 5 EIOU 5.1 为什么提出EIOU 5.2 EIOU代码 6 Wise-IoU 7 YOLOv5中添加GIoU、DIoU、CIoU、…...

windows电脑pc如何使用svn获取文档和代码

一、安装svn 下载链接 也可通过其他方式下载 二、使用 2.1 随便找一个文件夹 2.2 点击右键,选择SVN Checkout 2.3输入网址 如当你在网页上访问时地址为https://10.197.78.78/!/#aaa/view/head/bbb 在这里不能直接填入,而是 https://10.197.78.78/sv…...

ROS1学习笔记:tf坐标系广播与监听的编程实现(ubuntu20.04)

参考B站古月居ROS入门21讲:tf坐标系广播与监听的编程实现 基于VMware Ubuntu 20.04 Noetic版本的环境 文章目录一、创建功能包二、创建代码2.1 以C为例2.1.1 配置代码编译规则2.1.2 编译整个工作空间2.1.2 配置环境变量2.1.4 执行代码2.2 以Python为例2.2.1 配置代码…...

​力扣解法汇总1590. 使数组和能被 P 整除

目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 给你一个正整数数组 nums,请你移除 最短 子数组(可以为 …...

Spring源码阅读(基础)

第一章:bean的元数据 1.bean的注入方式: 1.1 xml文件 1.2 注解 Component(自己写的类才能在上面加这些注解) 1.3配置类: Configuration 注入第三方数据源之类 1.4 import注解 (引用了Myselector类下…...

服务搭建篇(九) 使用GitLab+Jenkins搭建CI\CD执行环境 (上) 基础环境搭建

1.前言 每当我们程序员开发在本地完成开发之后 , 都要部署到正式环境去使用 , 在一些传统的运维体系中 , 开发与运维都是割裂的 , 开发人员不允许操作正式服务器 , 服务器只能通过运维团队来操作 , 这样可以极大的提高服务器的安全性 , 不经过安全保护的开放服务器 , 对于黑客…...

CDC 长沙站丨云原生技术研讨会:数字兴链,云化未来!

一、活动信息:活动主题:CDC 长沙站丨云原生技术研讨会活动时间:2023 年 3 月 14 日下午 14:30-17:30活动地点:长沙市岳麓区-拓维信息总部 1 楼多功能厅活动参与方式:免门票参与,戳此…...

A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[二](DTransE/PairRE:基于表示学习的知识图谱链接预测算法)

推荐参考文章: A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[一](基于距离的翻译模型:TransE、TransH、TransR、TransH、TransA、RotatE) A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[二](DTransE/PairRE:基于表示学习的知识图谱链接预测算法) A.…...

香港酒店模拟分析项目报告--使用tableau、python、matlab

转载请标记本文出处 软件:tableau、pycharm、关系型数据库:MySQL 数据大量分析考虑电脑性能的情况。 文章目录前言一、爬虫是什么?二、使用tableau数据可视化1.引入数据1.1 制作直方图-各地区酒店数量条形图1.2 各地区酒店均价1.3 价格等级堆…...

第18天-商城业务(商品检索服务,基于Elastic Search完成商品检索)

1.构建商品检索页面 1.1.引入依赖 <!-- thymeleaf模板引擎 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><!-- 热更新 --><…...

5.2 对射式红外传感器旋转编码器计次

对射式红外传感器1.1 接线图VCC GND分别接电源的正负极DO数字输出端&#xff0c;随意选择一个GPIO口1.2 硬件原理当挡光片或者编码盘在对射式红外传感器中间经过时&#xff0c;DO就会输出电平变化信号&#xff0c;电平跳变信号触发STM32 PB14号口中断&#xff0c;在中断函数中执…...

【数据库概论】第九章 关系查询处理和查询优化

第九章 关系查询处理和查询优化 本章主要介绍关系数据库查询管理和查询优化&#xff0c;主要分为代数优化&#xff08;又称逻辑优化&#xff09;和物理优化&#xff08;也称非代数优化&#xff09;。 9.1 关系型数据库系统的查询处理 查询处理是关系型数据库管理系统执行查询…...

(WIP) my cloud test bed (by quqi99)

作者&#xff1a;张华 发表于&#xff1a;2023-03-10 版权声明&#xff1a;可以任意转载&#xff0c;转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 问题 想创建一个local local test bed, 用来方便做各种云实验&#xff0c;如openstack, k8s, ovn, lxd等…...

git | git 2023 详细版

文章目录一、Git命令1.2 设计用户签名1.3 初始化本地库1.4 查看本地库状态1.5 添加至暂存区1.6 从暂存区删除1.7 将暂存区的文件提交到本地库1.8 查看版本信息二、Git分支2.1 查看分支2.2 创建分支2.3 切换分支2.4 合并分支三、GitHub3.1 代码克隆clone3.2 给库取别名3.3 推送本…...

camunda流程引擎基本使用(笔记)

文章目录一、camunda基础1.1 安装与部署流程引擎1.2 流程引擎结构1.3 流程引擎的基本使用1.3.1 创建一个BPMN Diagram1.3.2 实现一个外部工作者1.3.3 部署流程1.3.4 创建一个流程实例并消费1.3.5 向流程中添加用户任务1.3.6 添加网关1.3.7 业务规则二、Java 集成流程引擎2.1 为…...

JS之数据结构与算法

前言数据结构是计算机存储、组织数据的方式,算法是系统描述解决问题的策略。了解基本的数据结构和算法可以提高代码的性能和质量。也是程序猿进阶的一个重要技能。手撸代码实现栈,队列,链表,字典,二叉树,动态规划和贪心算法1.数据结构篇1.1 栈栈的特点&#xff1a;先进后出clas…...

CnOpenData·A股上市企业数字化转型指数数据

一、数据简介 企业数字化转型是近年来中国社会各界重点关注的领域&#xff0c;但基础数据的不完善在很大程度上制约了相关科学研究的开展。构建合理、科学的数字化转型指标体系有利于学者定量地研究企业数字化的相关问题&#xff0c;也有利于衡量企业的数字化水平。广东金融学院…...

VMware16pro虚拟机安装全过程

很多时候需要用到Linux系统&#xff0c;简单的一种方式可以是&#xff1a;Windows系统运行Linux&#xff08;Windows Subsystem for Linux&#xff09;不过有些时候还是需要虚拟机来运行Linux&#xff0c;也更方便点&#xff0c;比如在做嵌入式系统的烧录等操作都需要Linux环境…...

阿里云第六代云服务器最新价格表(计算型c6、通用型g6和内存型r6)

目前阿里云第六代云服务器有计算型c6、通用型g6和内存型r6实例。计算型c6实例有2核4G、4核8G、8核16G配置可选&#xff0c;主要适用于网站应用、批量计算、视频编码等场景。通用型g6实例有2核8G、4核16G、8核32G配置可选&#xff0c;适用于各种类型的企业级应用&#xff0c;网站…...

微小目标识别研究(2)——基于K近邻的白酒杂质检测算法实现

文章目录实现思路配置opencv位置剪裁实现代码自适应中值滤波实现代码动态范围增强实现代码形态学处理实现代码图片预处理效果计算帧差连续帧帧差法原理和实现代码实现代码K近邻实现基本介绍实现代码这部分是手动实现的&#xff0c;并没有直接调用相关的库完整的代码——调用ope…...

2022-06-14至2022-08-11 关于复现MKP算法的总结与反思

Prerequisite 自2022年6月14日至2022年8月11日的时间内&#xff0c;我致力于完成A Hybrid Approach for the 0–1 Multidimensional Knapsack problem 论文的复现工作&#xff0c;此次是我第一次进行组合优化方向的学习工作&#xff0c;下面介绍该工作内容发展过程以及该工作结…...

IBMMQ教程二(window版安装)

下载下载地址&#xff1a;https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/messaging/mqadv/我这里选择的是9.1.0.0版本安装将下载完成的压缩包解压双击Setup.exe直接运行点击软件需求查看系统配置是否满足&#xff0c;右边绿色的对号说明满足需求&#xff0c…...

Java | HashSet 语法

HashSet 基于 HashMap 来实现的&#xff0c;是一个不允许有重复元素的集合。 HashSet 允许有 null 值。 HashSet 是无序的&#xff0c;即不会记录插入的顺序。 HashSet 不是线程安全的&#xff0c; 如果多个线程尝试同时修改 HashSet&#xff0c;则最终结果是不确定的。 您必须…...

js学习4(运算符)

### 1.算数运算符&#xff1a; 、-、*、\、%&#xff08;取余&#xff09;、**&#xff08;幂方&#xff09; ## 优先级 同数学课程&#xff0c;可以加括号 ### 2.自增和自减 、--&#xff08;即数值变量加一或减一&#xff09; ### 3.赋值运算符 、、-、*、/、... ### 4.比较运…...

2月更新 | Visual Studio Code Python

我们很高兴地宣布&#xff0c;2023年2月版 Visual Studio Code Python 和 Jupyter 扩展现已推出&#xff01;此版本包括以下改进&#xff1a;从激活的终端启动 VS Code 时的自动选择环境 使用命令 Python: Create Environmen 时可选择需求文件或可选依赖项 预发布&#xff1a;改…...

C++回顾(十八)—— 文件操作

18.1 I/O流概念和流类库结构 1 概念 程序的输入指的是从输入文件将数据传送给程序&#xff0c;程序的输出指的是从程序将数据传送给输出文件。 C输入输出包含以下三个方面的内容&#xff1a; &#xff08;1&#xff09;对系统指定的标准设备的输入和输出。即从键盘输入数据&am…...

以java编写员工管理系统(测试过 无问题)

一、系统结果的部分展示 二、题目以及相关要求 三、组成 1.该系统由 Employee 类 、commonEmployee类、Testemd类和managerEmployee类组成 2.Employee实现的代码 public class Employee {private String id;private String name;private String job;private int holiday…...

单例模式之懒汉式

在上篇文章中&#xff0c;我们讲了单例模式中的饿汉式&#xff0c;今天接着来讲懒汉式。 1.懒汉式单例模式的实现 public class LazySingleton {private static LazySingleton instance null;// 让构造函数为private&#xff0c;这样该类就不会被实例化private LazySingleto…...

1638_chdir函数的功能

全部学习汇总&#xff1a;GreyZhang/g_unix: some basic learning about unix operating system. (github.com) 今天看一个半生不熟的小函数&#xff0c;chdir。说半生不熟&#xff0c;是因为这个接口一看就知道是什么功能。然而&#xff0c;这个接口如何用可真就没啥想法了。 …...

使用CEF 获得某头条请求,并生成本地文件的方法

目录 一、获得网站请求响应信息 1、响应过滤 2、匹配过滤URL的函数 3、获得请求响应后的处理...

二十、Django-restframework之视图集和路由器

一、视图集和路由器 REST框架包含了一个处理视图集的抽象&#xff0c;它允许开发人员集中精力建模API的状态和交互&#xff0c;并根据通用约定自动处理URL构造。 视图集类与视图类几乎相同&#xff0c;不同之处在于它们提供的是retrieve或update等操作&#xff0c;而不是get或…...

[深入理解SSD系列 闪存实战2.1.2] SLC、MLC、TLC、QLC、PLC NAND_固态硬盘闪存颗粒类型

闪存最小物理单位是 Cell, 一个Cell 是一个晶体管。 闪存是通过晶体管储存电子来表示信息的。在晶体管上加入了浮动栅贮存电子。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子。有电子为0,无电子为1. SSD 根据闪存颗粒区分,固态硬盘有SLC、MLC、TLC、QLC、PLC 五种类型…...

论文阅读-MGTAB: A Multi-Relational Graph-Based Twitter Account DetectionBenchmark

目录 摘要 1. 引言 2. 相关工作 2.1. 立场检测 2.2.机器人检测 3.数据集预处理 3.1.数据收集和清理 3.2.专家注释 3.3. 质量评估 3.4.特征分析 4. 数据集构建 4.1.特征表示构造 4.2.关系图构建 5. 实验 5.1.实验设置 5.2.基准性能 5.3训练集大小的研究 5.4 社…...

基于libco的c++协程实现(时间轮定时器)

在后端的开发中&#xff0c;定时器有很广泛的应用。 比如&#xff1a; 心跳检测 倒计时 游戏开发的技能冷却 redis的键值的有效期等等&#xff0c;都会使用到定时器。 定时器的实现数据结构选择 红黑树 对于增删查&#xff0c;时间复杂度为O(logn)&#xff0c;对于红黑…...

java多线程与线程池-04线程池与AQS

第7章 线程池与AQS java.util.concurrent包中的绝大多数同步工具,如锁(locks)和屏障(barriers)等,都基于AbstractQueuedSynchronizer(简称AQS)构建而成。这个框架提供了一套同步管理的通用机制,如同步状态的原子性管理、线程阻塞与解除阻塞,还有线程排队等。 在JD…...

优化模型验证关键代码25:样本均值近似技术处理两阶段随机旅行商问题及Gurobipy代码验证

大多数数学规划模型都会考虑到研究问题中存在的不确定性,针对这些不确定性,两种常用的处理方法是鲁棒优化和随机规划。这篇论文我们关注后者,也就是两阶段随机旅行商问题;利用套期保值算法计算不同规模TSP的可行解,同时比较了样本均值近似技术的解的情况,并计算了该问题的…...

老爸:“你做的什么游戏测试简直是不务正业!”——我上去就是一顿猛如虎的解释。

经常有人问我&#xff1a;游戏测试到底是干什么呢&#xff1f;是游戏代练&#xff1f;每天玩游戏&#xff1f;装备随便造&#xff0c;怪物随便秒&#xff0c;线上GM指令随便用&#xff1f;可以每天玩玩游戏&#xff0c;不用忙工作&#xff0c;太爽了&#xff1f;有时朋友不理解…...

JVM垃圾回收调优知识点整理

目录 1、JVM内存模型 1.2、堆及垃圾回收 1.3、JVM参数设置经验: 1.4、对象逃逸分析:...

linux安装mysql-8.0.31

1)、下载mysql-8.0.31压缩包两种方式 a.本地下载后上传服务器解压&#xff0c;下载地址&#xff1a;https://downloads.mysql.com/archives/community/ b.服务器使用命令下载&#xff0c;注意&#xff1a;路径在那&#xff0c;就下载到那个位置。 wget https://dev.mysql.com/…...

2023 年会是网络安全的关键年吗?

过去 12 个月对网络安全领域和周围的每个人来说再次充满挑战。和往年不同&#xff0c;感觉很不一样&#xff0c;攻击源源不断。过去&#xff0c;大型漏洞每季度发生一次&#xff0c;但在过去一年中&#xff0c;在某些情况下&#xff0c;我们几乎每周都会处理严重漏洞。 已知利…...

【深度强化学习】(1) DQN 模型解析,附Pytorch完整代码

大家好&#xff0c;今天和各位讲解一下深度强化学习中的基础模型 DQN&#xff0c;配合 OpenAI 的 gym 环境&#xff0c;训练模型完成一个小游戏&#xff0c;完整代码可以从我的 GitHub 中获得&#xff1a; https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Mod…...

Nginx服务优化与防盗链

目录 1.隐藏nginx版本号 1.查看版本号 2.隐藏版本信息 2.修改用户与组 3.缓存时间 4.日志分割 5.连接超时 6.更改进程数 7.网页压缩 8.配置防盗链 1.配置web源主机&#xff08;192.168.156.10 www.lhf.com&#xff09; 2.配置域名映射关系 3.配置盗链主机 &#xff0…...

npm与yarn常用命令

npm npm -v&#xff1a;查看 npm 版本npm init&#xff1a;初始化后会出现一个 Package.json 配置文件&#xff0c;可以在后面加上 -y&#xff0c;快速跳到问答界面npm install&#xff1a;会根据项目中的 package.json 文件自动给下载项目中所需的全部依赖npm insall 包含 --…...

【C++】C++11新特性——右值引用

文章目录一、左值引用、 右值引用1.1 左值与右值1.2 左值引用1.3 右值引用二、右值引用的意义三、移动语句3.1 移动构造3.2 移动赋值3.3 总结四、move问题五、完美转发5.1 万能引用与折叠5.2 完美转发std::forward一、左值引用、 右值引用 1.1 左值与右值 我们经常能听到左值…...

C#基础教程21 正则表达式

文章目录 简介正则表达式语法字符集元字符转义字符量词贪婪匹配和非贪婪匹配正则表达式类Regex类Match方法Matches方法简介 正则表达式是一种描述字符串模式的语言,它可以用来匹配、查找、替换字符串中的模式。在C#中,我们可以使用System.Text.RegularExpressions命名空间下的…...

聚观早报|谷歌发布最大视觉语言模型;王兴投资王慧文ChatGPT项目

今日要闻&#xff1a;谷歌发布全球最大视觉语言模型&#xff1b;马斯克预计Twitter下季度现金流转正&#xff1b;王兴投资王慧文ChatGPT项目&#xff1b;美国拟明年 11 月开展载人绕月飞行&#xff1b;慧与科技宣布收购Athonet谷歌发布全球最大视觉语言模型 近日&#xff0c;来…...

java Spring5 xml配置文件方式实现声明式事务

在java Spring5通过声明式事务(注解方式)完成一个简单的事务操作中 我们通过注解方式完成了一个事务操作 那么 下面 我还是讲一下 基于xml实现声明式事务的操作 其实在开发过程中 大家肯定都喜欢用注解 因为他方便 这篇文章中的xml方式 大家做个了解就好 还是 我们的这张表 记…...

常用存储芯片-笔记本上固态硬盘PTS11系列推荐

在存储领域中&#xff0c;除了存储颗粒之外&#xff0c;还有一种极其重要的芯片&#xff1a;存储控制芯片。存储控制芯片是CPU与存储器之间数据交换的中介&#xff0c;决定了存储器最大容量、存取速度等多个重要参数。特别是在AI、5G、自动驾驶时代&#xff0c;对于数据处理及存…...

【AI绘图学习笔记】奇异值分解(SVD)、主成分分析(PCA)

这节的内容需要一些线性代数基础知识&#xff0c;如果你没听懂本文在讲什么&#xff0c;强烈建议你学习【官方双语/合集】线性代数的本质 - 系列合集 文章目录奇异值分解线性变换特征值和特征向量的几何意义什么是奇异值分解&#xff1f;公式推导SVD推广到任意大小矩阵如何求SV…...

【设计模式】模板方法模式和门面模式

模板方法模式和门面模式模板方法模式代码示例门面模式代码示例门面模式的应用场景模板方法模式 模板方法模式非常简单&#xff0c;就是定义了一个固定的公共流程&#xff0c;整个流程有哪些步骤是事先定义好的&#xff0c;具体的步骤则交由子类去实现。属于行为型设计模式。 简…...