当前位置: 首页 > news >正文

【学习笔记8】阅读StyleID论文源码

论文【链接】
源码【链接】

一、DDIM eta

ddim_step表示执行几轮去噪迭代,eta表示DDPM和DDIM的插值系数。当eta=0时,为DDPM;当eta≠0时,为DDIM。

参考

DDIM 简明讲解与 PyTorch 实现:加速扩散模型采样的通用方法
【stable diffusion】两个与采样器有关的参数效果:eta大小与ddim插值方式

二、torch.permute()函数

作用:

用于对torch进行维度变换。

transpose与permute的异同:

同:都是对tensor维度进行转置
异:permute函数可以对任意高维矩阵进行转置,但没有torch.permute()这个调用方式
对比:permute,也可以多次使用transpose

# 例子
torch.randn(2,3,4,5).permute(3,2,0,1).shape

参考

Pytorch之permute函数

三、parser.add_argument(action=‘store_true’)

action=‘store_true’表示:只要运行时该变量有传参就将该变量设为True。

参考

python之parser.add_argument()用法——命令行选项、参数和子命令解析器

四、seed everything()

这是一个用于设置随机数种子的函数,它可以确保在每次运行程序时生成的随机数序列都是相同的。这对于需要重现实验结果或调试代码非常有用。该函数的参数是一个整数值,它可以是任何值,但通常使用当前时间戳或其他唯一的标识符作为种子值。

什么是随机种子

随机数,分为真随机数和伪随机数,真随机数需要自然界中真实的随机物理现象才能产生,而对于计算机来说生成这种随机数是很难办到的。而伪随机数是通过一个初始化的值,来计算来产生一个随机序列,如果初始值是不变的,那么多次从该种子产生的随机序列也是相同的。这个初始值一般就称为种子。

程序中的随机数:

np.random.seed只影响 NumPy 的随机过程,torch.manual_seed也只影响 PyTorch 的随机过程。

import torch
torch.manual_seed(777)print(torch.rand(1))  # 始终输出:tensor([0.0819])
print(torch.rand(1))  # 始终输出:tensor([0.4911])

CUDA 的随机数:

PyTorch 中,还有另一个设置随机种子的方法:torch.cuda.manual_seed_all,从名字可知这是设置显卡的随机种子。

import torch
torch.cuda.manual_seed_all(777)print(torch.rand(1))  # 多次调用都产生不同输出
print(torch.rand(1, device="cuda:0"))  # 始终输出 tensor([0.3530], device='cuda:0')
print(torch.rand(1, device="cuda:1"))  # 始终输出 tensor([0.3530], device='cuda:0')

不同设备之间的随机数:

在 CPU 上创建 Tensor,再切换到 GPU 上。只要不直接在 GPU 上创建随机变量,就可以在 CPU 和 GPU 上产出相同的结果。

import torchtorch.manual_seed(777)
print(torch.rand(1).to("cuda:0"))  # 输出 tensor([0.0819], device='cuda:0')

参数

Seed Everything - 可复现的 PyTorch(一)

五、Python getattr() 函数

getattr() 函数用于返回一个对象属性值。

参考

Python getattr() 函数

六、tensor.detach()

返回一个新的tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个tensor永远不需要计算其梯度,不具有grad。即使之后重新将它的requires_grad置为true,它也不会具有梯度grad。
这样我们就会继续使用这个新的tensor进行计算,后面当我们进行反向传播时,到该调用detach()的tensor就会停止,不能再继续向前进行传播。
注意:使用detach返回的tensor和原始的tensor共同一个内存,即一个修改另一个也会跟着改变。

参考

pytorch的两个函数 .detach() .detach_() 的作用和区别

七、torch.full()

用于创建全相同的张量。

## 例子
t = torch.full((3,3),10)
print("torch.full((3,3),10)的输出结果\n",t)
## 输出结果
torch.full((3,3),10)的输出结果
tensor([[10., 10., 10.],[10., 10., 10.],[10., 10., 10.]])

参考

PyTorch | torch.full()使用方法 | torch.full()如何使用? torch.full()例子说明 | 通过torch.full创建全相同的张量

相关文章:

【学习笔记8】阅读StyleID论文源码

论文【链接】 源码【链接】 一、DDIM eta ddim_step表示执行几轮去噪迭代,eta表示DDPM和DDIM的插值系数。当eta0时,为DDPM;当eta≠0时,为DDIM。 参考 DDIM 简明讲解与 PyTorch 实现:加速扩散模型采样的通用方法 【s…...

wordpress旅游网站模板

旅行社wordpress主题 简洁实用的旅行社wordpress主题,适用于旅行社建网站的wordpress主题模板。 https://www.jianzhanpress.com/?p4296 旅游WordPress主题 简洁实用的旅游WordPress主题,适合做旅游公司网站的WordPress主题模板。 https://www.jian…...

vs2019 c++20规范 STL 库中头文件 <atomic> 源码注释及探讨几个知识点

(1 探讨一) 模板类 atomic 的继承关系与数据结构如下: (2 探讨二 ) 可见 atomic 的 fetch_xx 函数,返回的都是 atomic 中存储的旧值。测试如下: 谢谢...

Flink任务如何跑起来之 2.算子 StreamOperator

Flink任务如何跑起来之 2.算子 StreamOperator 前文介绍了Transformation创建过程,大多数情况下通过UDF完成DataStream转换中,生成的Transformation实例中,核心逻辑是封装了SimpleOperatorFactory实例。 UDF场景下,DataStream到…...

学习笔记——路由网络基础——路由优先级(preference)

1、路由优先级(preference) 路由优先级(preference)代表路由的优先程度。当路由器从多种不同的途径获知到达同一个目的网段的路由(这些路由的目的网络地址及网络掩码均相同)时,路由器会比较这些路由的优先级,优选优先级值最小的路由。 路由来源的优先…...

数据预处理——调整方差、标准化、归一化(Matlab、python)

对数据的预处理: (a)、调整数据的方差; (b)、标准化:将数据标准化为具有零均值和单位方差;(均值方差归一化(Standardization)) (c)、最值归一化,也称为离差标准化,是对原始数据的…...

opencv_特征检测和描述

理解特征 寻找独特的特定模式或特定特征,可以轻松跟踪和比较。 拼图:在图像中搜索这些特征,找到它们,在其他图像中查找相同的特征并对齐它们。而已。 基本上,角被认为是图像中的好特征。 在本单元中,我…...

CID引流电商下的3C产品选品策略深度解析

​摘要:随着电商行业的迅猛发展和消费者需求的日益多样化,CID引流电商作为一种新兴的电商模式,逐渐受到了广泛关注。在这一模式下,3C产品作为高客单价、高技术含量的代表品类,其选品策略的制定显得尤为重要。本文将从多…...

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵 flyfish 状态转移矩阵(State Transition Matrix)F的构造 这篇是一定要看的,拖到文章的最后部分,需要理解状态转移矩阵怎么来的,怎么是这个…...

李宏毅深度学习01——基本概念简介

视频链接 基本概念 Regression(回归): 类似于填空 Classification(分类): 类似于选择 Structure Learning(机器学习): ?? 机器学习找对应函数…...

TcpClient 服务器、客户端连接

TcpClient 服务器 TcpListener 搭建tcp服务器的类,基于socket套接字通信的 1 创建服务器对象 TcpListener server new TcpListener(IPAddress.Parse("127.0.0.1"), 3000); 2 开启服务器 设置最大连接数 server.Start(1000); 3 接收客户端的链接,只能…...

13大最佳工程项目管理系统软件盘点

国内外主流的13款工程项目管理系统软件:Worktile、中建软件、泛微建筑项目管理软件、LiquidPlanner、Wrike、建文软件、广联达、Microsoft Project、泛普软件、Procore、Buildertrend、Fieldwire、Autodesk Construction Cloud。 在快速变化的工程领域,有…...

SpringMVC:拦截器(Interceptor)

1. 简介 拦截器(Interceptor)类似于过滤器(Filter) Spring MVC的拦截器作用是在请求到达控制器之前或之后进行拦截,可以对请求和响应进行一些特定的处理。拦截器可以用于很多场景下: 1. 登录验证&#xf…...

【Python】selenium使用find_element时解决【NoSuchWindowException】问题的方法

NoSuchWindowException 是 Selenium WebDriver 中的一种异常,当尝试切换到一个不存在的窗口时,或者在尝试获取窗口句柄时窗口已经关闭或不存在,就会抛出这个异常。 以下是一些解决 NoSuchWindowException 的常见方法: 检查窗口是…...

PTA:7-188 水仙花数

作者 王秀秀 单位 山东交通学院 任务描述 本关任务:输出100到999之间的所有的“水仙花数”。所谓的“水仙花数”是指一个3位数,其各位数字立方和等于该数本身。 例如,153是一个水仙花数,因为 15313 53 33 提示 关键在于对一…...

HTML静态网页成品作业(HTML+CSS+JS)—— 美食企业曹氏鸭脖介绍网页(4个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现 图片轮播切换,共有4个页面。 二、…...

SCI二区|鲸鱼优化算法(WOA)原理及实现【附完整Matlab代码】

目录 1.背景2.算法原理2.1算法思想 3.结果展示4.参考文献5.代码获取 1.背景 2016年,S Mirjalili受到自然界座头鲸社会行为启发,提出了鲸鱼优化算法(Whale Optimization Algorithm, WOA)。 2.算法原理 WOA模拟了座头鲸的社会行为…...

人脸匹配——OpenCV

人脸匹配 导入所需的库加载dlib的人脸识别模型和面部检测器读取图片并转换为灰度图比较两张人脸选择图片并显示结果比较图片创建GUI界面运行GUI主循环运行显示全部代码 导入所需的库 cv2:OpenCV库,用于图像处理。 dlib:一个机器学习库&#x…...

韩顺平0基础学java——第22天

p441-459 异常exception 选中代码块,快捷键ctraltt6,即trt-catch 如果进行了异常处理,那么即使出现了异常,但是会继续执行 程序过程中发生的异常事件分为两大类: 异常体系图※ 常见的运行异常:类型转换…...

神经网络介绍及教程案例

神经网络介绍及教程&案例 神经网络(Neural Networks)是机器学习和人工智能中的一种关键技术,模仿了人类大脑的工作方式,能够处理复杂的数据和任务。以下是神经网络的一些基础介绍: 基本概念 神经元(N…...

16个不为人知的资源网站,强烈建议收藏!

整理了16个不为人知的资源网站,涵盖了课程学习、办公技能、娱乐休闲、小说音乐等多种资源,强烈建议收藏! #学习网站 1、中国大学MOOC icourse163.org/ 这是一个汇集了国内顶尖大学免费课程资源的平台,众多985工程院校如北京大…...

pandas获取某列最大值的所有数据

第一种方法: 按照某列进行由大到小的排序,然后再进去去重,保留第一个值,最终保留的结果就是最大值的数据 # 由大到小排序 data_frame data_frame.sort_values(bycolumn_a, ascendingFalse)# 按照column_b列去重保留第一条&#…...

App UI 风格展现非凡创意

App UI 风格展现非凡创意...

rocketmq-5.1.2的dleger高可用集群部署

1、背景 原先为5.0.0版本,因检查出有漏洞,升级到5.1.2版本。 【Rocketmq是阿里巴巴在2012年开发的分布式消息中间件,专为万亿级超大规模的消息处理而设计,具有高吞吐量、低延迟、海量堆积、顺序收发等特点。在一定条件下&#xf…...

无线网络与物联网技术[1]之近距离无线通信技术

无线网络与物联网技术 近距离无线通信技术WIFIWi-Fi的协议标准Wi-Fi的信道Wi-Fi技术的术语Wi-Fi的组网技术Ad-hoc模式无线接入点-APAP:FAT AP vs FIT AP Wi-Fi的特点与应用Wi-Fi的安全技术 Bluetooth蓝牙技术概论蓝牙的技术协议蓝牙的组网技术微微网piconet(了解)散…...

Codeforces Round 952 (Div. 4)

题解写到博客园了,懒得复制过来了了,放个链接 https://www.cnblogs.com/yxcblogs/p/18243276 推广一下自己记录的算法编程竞赛模板仓库 GitHub - yxc-s/programming-template: This repository contains C programming templates optimized for competi…...

spark MLlib (DataFrame-based) 中的聚类算法Bisecting K-Means、K-Means、Gaussian Mixture

Bisecting K-Means 核心原理: Bisecting K-Means 是一种层次 K-Means 聚类算法,基于 Steinbach、Karypis 和 Kumar 的论文《A comparison of document clustering techniques》,并对 Spark 环境进行了修改和适应。 该算法通过递归地将数据集…...

天降流量于雀巢?元老品牌如何创新营销策略焕新生

大家最近有看到“南京阿姨手冲咖啡”的视频吗?三条雀巢速溶咖啡入杯,当面加水手冲,十元一份售出,如此朴实的售卖方式迅速在网络上走红。而面对这一波天降的热度,雀巢咖啡迅速做出了回应,品牌组特地去到了阿…...

新疆在线测宽仪配套软件实现的9大功能!

在线测宽仪可应用于各种热轧、冷轧板带材的宽度尺寸检测,材质不限,木质、钢制、铁质、金属、纸质、塑料、橡胶等都可以进行无损非接触式的检测,在各式各样的产线应用中,有些厂家,需要更加详尽完备的分析信息&#xff0…...

考研计组chap3存储系统

目录 一、存储器的基本概念 80 1.按照层次结构 2.按照各种分类 (41)存储介质 (2)存取方式 (3)内存是否可更改 (4)信息的可保存性 (5)读出之后data是否…...

wordpress新建文章中添加目录/广州新闻最新消息今天

使用umireactdvaant-design开发项目时,通过对umi-request进行二次封装方便进行后端接口的请求 一、话不多说先贴完整代码: /utils/request.ts import { extend } from umi-request; import { history } from umi; import { message } from antd; impo…...

云空间的网站/发帖子最好的几个网站

先看一下真实的response是什么样的。 点击Inspectors->Raw,如果有乱码,有一行提示“Response is encoded and may require decoding before inspection. Click here to transform”,点一下就解析出来了。 点击View in Notepad,…...

t型网站域名和版面/搜索引擎收录查询

点蓝色字关注“青田教育”10月14日,青田县幼儿园管理论坛在县机关幼儿园举行。县教育局副局长朱小军出席,全县各幼儿园园长、公办独立园副园长、帮扶工作负责人等共100余人参加论坛。本次论坛以“提升管理水平,打造一园一品”为主题。谢巧美、…...

新浪云 安装wordpress/开发一个app软件多少钱

框模型-margin外边距 微信小程序交流群:111733917 | 微信小程序从0基础到就业的课程:https://edu.csdn.net/topic/huangjuhua 基础用法 围绕在元素边框的空白区域是外边距。设置外边距会在元素外创建额外的“空白”。 设置外边距的最简单的方法就是使用…...

医药企业建设网站需要什么/整站外包优化公司

如果编译器的下载地址偏移和中断里面的中断偏移都设置正确(一致且合理),那么剩下的原因可能是中断没处理好 我遇到的问题是,无线下载PWM有一路不能用,但有线下载可以:在引导程序跳转前要__disable_irq() ;…...

设计网站过程/站长之家域名查询官网

单例模式是为了让类在整个进程全局只有一个实例对象,在多线程时有几个点需要注意: 单例中成员方法在多线程访问时是线程安全的单例中如果有成员变量,成员方法对改成员变量是只读访问,那也是线程安全的单例中如果有成员变量&#…...