当前位置: 首页 > news >正文

齐普夫定律在循环神经网络中的语言模型的应用

目录

  • 齐普夫定律解释
    • 公式解释
    • 图与公式的关系
    • 代码与图的分析
    • 结论
  • 使用对数表达方式的原因
    • 1. 线性化非线性关系
    • 2. 方便数据可视化和分析
    • 3. 降低数值范围
    • 4. 方便参数估计
    • 公式详细解释
    • 结论

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
来自:https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/language-models-and-dataset.html

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

齐普夫定律解释

齐普夫定律(Zipf’s Law)是一种描述自然语言中单词频率分布的经验法则,它指出在一个文本或语料库中,单词的频率与其出现的排名成反比关系。具体来说,频率最高的单词出现的次数最多,排名第二的单词出现的次数大约是最高频单词的一半,排名第三的单词出现次数是最高频单词的三分之一,依此类推。

公式解释

齐普夫定律的数学表达式可以表示为:

n i ∝ 1 i α n_i \propto \frac{1}{i^\alpha} niiα1

其中, n i n_i ni 表示第 ( i ) 个单词的频率,( i ) 是该单词的排名,( \alpha ) 是一个常数。为了便于理解,这个公式可以变形为:

[ n_i = \frac{C}{i^\alpha} ]

其中 ( C ) 是一个归一化常数。

在图8.3.7和8.3.8中,这个公式被进一步转化为对数形式,以便在对数坐标系中表现出线性关系:

[ \log n_i = -\alpha \log i + c ]

这里,( \log n_i ) 是单词频率的对数,( \log i ) 是单词排名的对数,( \alpha ) 是斜率,( c ) 是截距。

图与公式的关系

在图中绘制了词频与排名的对数图。通过对图像进行对数变换,可以观察到频率与排名之间的关系是否遵循齐普夫定律。如果单词频率与排名在对数坐标系中呈现一条直线,这意味着词频与排名确实遵循齐普夫定律,即:

[ \log n_i = -\alpha \log i + c ]

从图中我们可以看到,词频分布在对数坐标系中近似为一条直线,这验证了齐普夫定律的正确性。

代码与图的分析

从代码和图中,我们可以看到以下几个步骤:

  1. 统计词频:读取文本数据并进行分词,统计每个单词的出现频率。
  2. 排序:根据单词的出现频率对单词进行排序,得到每个单词的排名。
  3. 绘制图形:在对数坐标系中绘制单词的频率和排名的关系图。

代码示例如下:

import random
import torch
from d2l import torch as d2ltokens = d2l.tokenize(d2l.read_time_machine())
corpus = [token for line in tokens for token in line]
vocab = d2l.Vocab(corpus)
vocab.token_freqs[:10]freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',xscale='log', yscale='log')

上面的代码统计了文本数据中的词频,并在对数坐标系中绘制了词频图。

结论

通过以上分析,我们可以理解齐普夫定律的基本概念及其数学表示方式,并通过代码和图形验证了齐普夫定律在自然语言词频分布中的应用。具体地,通过观察词频和排名在对数坐标系中的线性关系,我们可以确认自然语言中的单词频率确实遵循齐普夫定律。

在这里插入图片描述
在这里插入图片描述

使用对数表达方式的原因

使用对数表达方式([ \log n_i = -\alpha \log i + c ])的原因主要有以下几点:

1. 线性化非线性关系

齐普夫定律本身是一个非线性关系:

[ n_i \propto \frac{1}{i^\alpha} ]

通过取对数,两边都取对数后变为线性关系:

[ \log n_i = -\alpha \log i + c ]

这使得我们可以用直线来描述这个关系,而直线在统计学和数据分析中更容易处理和理解。

2. 方便数据可视化和分析

对数坐标系能够更直观地展示数据的幂律分布特性。在对数坐标系中,幂律分布的数据点会呈现为一条直线,这使得我们可以更容易地识别和验证数据是否符合齐普夫定律。

在图中,横轴(单词排名)和纵轴(单词频率)都取对数,如果数据点近似排列成一条直线,就说明词频分布符合齐普夫定律。这种图形化表示使得观察和分析数据的分布规律变得直观和简单。

3. 降低数值范围

自然语言中的单词频率差异很大,频率最高的单词和频率最低的单词可能相差几个数量级。直接使用原始数据进行分析和可视化会遇到数值范围过大的问题,导致图形难以阅读和解释。而通过取对数,可以压缩数据的范围,使得不同频率的单词在图中更紧凑地展示,便于比较和分析。

4. 方便参数估计

在对数空间中,线性回归可以用来估计幂律分布中的参数。通过线性回归,我们可以得到斜率 ( -\alpha ) 和截距 ( c ),进而估计出原始幂律分布的参数。这在统计建模和参数估计中非常实用。

公式详细解释

原始齐普夫定律公式:

[ n_i \propto \frac{1}{i^\alpha} ]

取对数后变为:

[ \log n_i = \log \left( \frac{C}{i^\alpha} \right) ]

其中 ( C ) 是归一化常数,进一步分解:

[ \log n_i = \log C - \alpha \log i ]

将 ( \log C ) 记作 ( c )(因为 ( C ) 是常数,所以 ( \log C ) 也是常数),最终得到:

[ \log n_i = -\alpha \log i + c ]

结论

通过使用对数表达方式,我们将非线性的幂律关系转化为线性关系,使得数据可视化、分析和参数估计变得更加直观和方便。这种方法不仅简化了分析过程,也增强了结果的解释力和可视化效果。

相关文章:

齐普夫定律在循环神经网络中的语言模型的应用

目录 齐普夫定律解释公式解释图与公式的关系代码与图的分析结论 使用对数表达方式的原因1. 线性化非线性关系2. 方便数据可视化和分析3. 降低数值范围4. 方便参数估计公式详细解释结论 来自:https://zh-v2.d2l.ai/chapter_recurrent-neural-networks/language-model…...

如何在Android Studio上发布Flutter应用

发布Flutter应用到Android平台是一个多步骤的过程,涉及配置应用、生成签名密钥、配置Gradle文件、构建发布版本APK等步骤。本文将详细介绍这些步骤,帮助你顺利发布Flutter应用。 1. 准备你的应用 在发布之前,确保你的应用在开发环境中运行良…...

C++ 字符串处理4-根据指定的分隔符将字符串分割为多个子串根据指定的分隔符将多个子串连接成一个字符串

1. 关键词 C 字符串处理 分割字符串 连接字符串 跨平台 2. strutil.h #pragma once#include <string> #include <vector>namespace cutl {/*** brief The type of vector strings used in this library.**/using strvec std::vector<std::string>;/*** b…...

微信小程序请求request封装

公共基础路径封装 // config.js module.exports {// 测试BASE_URL: https://cloud.chejj.cn,// 正式// BASE_URL: https://cloud.mycjj.com };请求封装 // request.js import config from ../config/baseUrl// 请求未返回时的loading const showLoading () > wx.showLoadi…...

Web前端不挂科:深入探索与实战指南

Web前端不挂科&#xff1a;深入探索与实战指南 在数字化时代的浪潮中&#xff0c;Web前端开发已成为一项炙手可热的技能。然而&#xff0c;对于许多初学者来说&#xff0c;如何避免在Web前端课程中挂科却成为了一道难题。本文将从四个方面、五个方面、六个方面和七个方面&…...

Golang | Leetcode Golang题解之第149题直线上最多的点数

题目&#xff1a; 题解&#xff1a; func maxPoints(points [][]int) (ans int) {n : len(points)if n < 2 {return n}for i, p : range points {if ans > n-i || ans > n/2 {break}cnt : map[int]int{}for _, q : range points[i1:] {x, y : p[0]-q[0], p[1]-q[1]if…...

京准电钟 NTP时间同步服务器助力水库水坝水利自动化建设

京准电钟 NTP时间同步服务器助力水库水坝水利自动化建设 京准电钟 NTP时间同步服务器助力水库水坝水利自动化建设 水库大坝监测系统主要包括渗流监测系统、流量监测系统、雨量监测系统、沉降监测系统组成。每一个监测系统由监测仪器及自动化数据采集装置&#xff08;内置通信装…...

程序员应该具备什么职业素养?

程序员应该有什么职业素养&#xff1f; 作为一个程序员&#xff0c;拥有以下职业素养是非常重要的&#xff1a; 扎实的技术功底&#xff1a;作为程序员&#xff0c;首先要具备扎实的技术基础&#xff0c;包括编程语言、算法、数据结构等方面的知识&#xff0c;能够熟练地解决问…...

linux 安装sftp及使用sftp上传和下载

一、centos7 安装sftp 1.安装 OpenSSH 服务&#xff1a; sudo yum install openssh-server2.启动 SSH 服务&#xff0c;并设置为开机启动&#xff1a; sudo systemctl start sshd sudo systemctl enable sshd3.创建一个新用户&#xff0c;用于SFTP连接&#xff08;替换your_…...

AI虚拟试穿技术:开启高保真、多场景、多样化服装组合的试穿应用

随着电子商务的快速发展,消费者对于在线购物体验的要求越来越高。特别是在服装领域,消费者渴望能够在购买前直观地了解服装的试穿效果。传统的虚拟试穿技术虽然已有一定的发展,但在不同场景下的高保真度和鲁棒性方面仍面临挑战。为此,我们研发了一种全新的AI虚拟试穿技术,…...

数栈xAI:轻量化、专业化、模块化,四大功能革新 SQL 开发体验

在这个数据如潮的时代&#xff0c;SQL 已远远超越了简单的查询语言范畴&#xff0c;它已成为数据分析和决策制定的基石&#xff0c;成为撬动企业智慧决策的关键杠杆。SQL 的编写和执行效率直接关系到数据处理的速度和分析结果的深度&#xff0c;对企业洞察市场动态、优化业务流…...

oppo手机精简包名列表

oppo广告机&#xff0c;coloros为13.0&#xff0c;测试机为oppo a1x 5g。 手机第一次开机后就全屏广告&#xff0c;被恶心了好几个月。现使用universal Android debolater进行卸载测试&#xff0c;其中&#xff1a; 不可卸载的&#xff1a; 开机广告&#xff1a;com.coloros.…...

Cisco Packet Tracer实验(二)

二、用交换机构建 LAN 构建物件如下&#xff1a; 四个PC 两个交换机 一个Multi Switch多功能拓展控制器 连线必须是这个直线&#xff01;&#xff01;&#xff01;不是虚线 最后实现效果如下&#xff1a; 全部的线是绿的&#xff0c;就表示是通的。 尝试一下&#xff0c;看PC…...

Julia 数学函数

Julia 数学函数 Julia 是一种高性能的动态编程语言,特别适合于数值计算和科学计算。在数学领域,Julia 提供了丰富的内置函数,这些函数涵盖了从基本运算到高级数学运算的各个方面。本文将详细介绍 Julia 中的数学函数,并提供一些示例,帮助读者更好地理解和使用这些函数。 …...

[next.js] svgr/webpack

nextjs如何配置svg文件&#xff0c;使其像react组件一样导入? 当前next.js 开发环境我使用了--turbo 来开启turbopack加速文件构建&#xff0c;所以之前的一些webpack loader之类的无法正常工作。通过搜索发现一般都是使用svgr/webpack来处理svg&#xff0c;打开svgr官网发现…...

vue页面和 iframe多页面无刷新方案和并行存在解决方案

面临问题 : back的后台以jsp嵌套iframe为主, 所以在前端框架要把iframe无刷新嵌套和vue页面进行并行使用,vue的keep-alive只能对虚拟dom树 vtree 进行缓存无法缓存iframe,所以要对iframe进行处理 tab标签的切换效果具体参考若依框架的tab切换,可以去若依看源码,若依源码没有实…...

Leetcode498. 对角线遍历

Every day a Leetcode 题目来源&#xff1a;498. 对角线遍历 解法1&#xff1a;模拟 根据题目要求&#xff0c;矩阵按照对角线进行遍历。设矩阵的行数为 m&#xff0c;矩阵的列数为 n&#xff0c;我们仔细观察对角线遍历的规律可以得到如下信息&#xff1a; 一共有 mn−1 条…...

flume配置----a1.sources.r1.positionFile=xxxx.json

positionFile 的作用和用途 记录读取位置&#xff1a; positionFile 记录了 Flume 读取文件的当前位置&#xff08;偏移量&#xff09;&#xff0c;确保在 Flume 重启或崩溃后&#xff0c;能够从上次读取的位置继续读取文件&#xff0c;而不是重新开始读取。这在处理大文件或长…...

Controller 自动化日志输出

Starter库 1.定义注解 Target(ElementType.METHOD) Retention(RetentionPolicy.RUNTIME) Documented public interface TraceLog {/*** 日志类型** return*/String type() default ""; }2.定义捕获日志接口方法 public interface ITraceLogProcess {void afterThr…...

css3中有哪些新属性(特性)?

在 CSS3 中引入了许多新的属性和特性&#xff0c;以下是其中一些主要的&#xff1a; Flexbox&#xff08;弹性盒子布局&#xff09;&#xff1a;通过 display: flex 及其相关属性&#xff0c;实现灵活的布局方式&#xff0c;使得元素在容器中可以自动调整大小和位置。 Grid&am…...

SAP ABAP 之面向对象OO

文章目录 前言一、类的理解二、如何创建ABAP类 a.类的定义与构成 b.类的访问区域 c.特殊方法 d.类的继承 三、类中参数的使用 a.IMPORTING / EXPORTING b.CHANGING c.RETURNING d.EX…...

在VSCode中使用Vim

在VSCode中使用Vim&#xff0c;主要涉及到Vim插件的安装和配置。以下是在VSCode中使用Vim的详细步骤&#xff1a; 1. 安装Vim插件 打开VSCode&#xff1a;首先&#xff0c;启动你的VSCode编辑器。进入扩展面板&#xff1a;在VSCode的左侧活动栏中&#xff0c;点击扩展图标&am…...

鸿蒙低代码开发的局限性

在版本是DevEco Studio 3.1.1 Release&#xff0c;SDK是3.1.0(API9) 的基础上。 1、低代码插件没有WebView组件。 2、低代码插件没有空白的自定义组件&#xff0c;当前提供的所谓自定义组件&#xff0c;只能用列表中提供的组件来拼接新的组件。 3、使用ets代码自定义的组件&…...

Codeforces Round 952 (Div. 4) c++题解(A-H1)

开头 : 这场没打&#xff0c;今天vp了一下&#xff0c;写了A-G,然后就去吃饭了! 比赛链接 : Dashboard - Codeforces Round 952 (Div. 4) - Codeforces A 直接交换&#xff0c;输出即可 inline void solve(){string a , b ; cin >> a>> b ;char c a[0] ;a…...

人工智能将成为数学家的“副驾驶”

人工智能将成为数学家的“副驾驶” 数学传统上是一门独立的科学。1986年&#xff0c;安德鲁怀尔斯为了证明费马定理&#xff0c;退到书房里呆了7年。由此产生的证明往往很难让同事们理解&#xff0c;有些至今仍有争议。但近年来&#xff0c;越来越多的数学领域被严格地分解为各…...

自适应巡航控制技术规范(简化版)

自适应巡航控制技术规范(简化版) 1 系统概述2 功能需求3 性能需求4 功能激活条件5 功能抑制条件6 系统局限性1 系统概述 ACC 自适应巡航系统可自动控制纵向跟车距离,减轻驾驶员的工作量,即驾驶员无需频繁的踩制动和油门便可完成部分的驾驶任务,但责任主体仍然是驾驶员,驾…...

【AI】文心一言的使用分享

在数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;技术的飞速发展正在改变我们的生活。文心一言&#xff0c;作为这一浪潮中的佼佼者&#xff0c;以其卓越的自然语言处理能力和广泛的应用场景&#xff0c;给我带来了前所未有的使用体验。在这篇分享中&#xff0c;我…...

Java学习-MyBatis学习(四)

代码下载 解决字段名与属性名不一致 ①使用别名emp_name empName解决字段名和属性名不一致 <select id"getAllEmpOld" resultType"Emp"><!--①使用别名emp_name empName解决字段名和属性名不一致-->select eid,emp_name empName,age,sex,em…...

多源最短路径算法 -- 弗洛伊德(Floyd)算法

1. 简介 Floyd算法&#xff0c;全名为Floyd-Warshall算法&#xff0c;亦称弗洛伊德算法或佛洛依德算法&#xff0c;是一种用于寻找给定加权图中所有顶点对之间的最短路径的算法。这种算法以1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特弗洛伊德的名字命名。 2. 核心思…...

同三维T80005EH4 H.265 4路高清HDMI编码器

同三维T80005EH4 H.265 4路高清HDMI编码器 4路HDMI输入2路3.5音频输入&#xff0c;第1路和第2路HDMI可支持4K30&#xff0c;其它支持高清1080P60 产品简介&#xff1a; 同三维T80005EH4 4路HDMI高清H.265编码器采用最新高效H.265高清数字视频压缩技术&#xff0c;具备稳定…...

信誉好的唐山网站建设/经典软文案例200字

第一次接触SpringBoot&#xff0c;根据官网在pom.xml中导入相应依赖后&#xff0c;首先&#xff0c;新建controller包&#xff0c;在其中写HelloController类&#xff1a; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation…...

只做动漫的h网站/上海网络推广外包

一个适当的插件架构可以意味着一个完全不同的IDE。Sublime Text和TextMate就是很好的例子。你知道Xcode也支持插件吗&#xff1f;如果你不这样做我也不会感到吃惊&#xff0c;苹果并没有把太多精力投入到广告Xcode中的这一部分。事实上&#xff0c;很少有文献可用于为Xcode创建…...

江苏网站开发/做网站建网站公司

博士学位个人简历范文博士学位个人求职简历范文由yjbys提供整理,转载博士学位个人求职简历范文请标明出处求 职 目 标谋求高校或科研院所及相关企事业单位的工作&#xff0c;从事教学或科研工作。个 人 信 息姓 名 XXX 性 别 男 出生日期 ***毕业院校 浙江大学 学 历 博士 专 业…...

微商城 微网站制作/郑州seo培训

第一步 新建工程 新建工程选择开发板,进入vivado界面,这里就不多说了。 第二步 添加design souce 这一步就是写我们要测试的Verilog模块,因为只是仿真,所以我们不需要综合和实现,也因此我个人认为,在design souce里面的文件就不需要按照顶层到底层的方式写,而是将需要…...

图书馆门户网站建设方案/搜索引擎营销sem

一.Flutter 线程管理 Embeder : 嵌入器 Flutter Engine要求Embeder提供四个Task Runner&#xff0c;Embeder指的是将引擎移植到平台的中间层代码。这四个主要的Task Runner包括&#xff1a; 效果图 1.Platform Task Runner Flutter Engine的主Task Runner&#xff0c;类似于A…...

北京著名网站建设公司/个人网页设计作品欣赏

感谢分享 http://blog.csdn.net/uikoo9/article/details/43451377 内容简介 介绍目前前端人员开发app的几种方法&#xff0c;具体介绍hbuilder开发app&#xff0c;一扇赞新的大门~ 无所不能的js 最开始js仅仅局限于网页上一些效果&#xff0c;操作网页内容等&#xff0c; 但是…...