当前位置: 首页 > news >正文

OpenCV形态学

什么事形态学处理
基于图像形态进行处理的一些基本方法;
这些处理方法基本是对二进制图像进行处理;
卷积核决定着图像出来后的效果。

一 图像二值化

什么是二值化
将图像的每个像素变成两种值,如0,255.

全局二值化。

局部二值化。

threshold API

threshold(img,thresh,maxVal,type)
img:图像,最好是灰度图
thresh:阈值
maxVal:超过阈值,替换成maxVal
THRESH_BINARY和THRESH_BINARY_INV
THRESH_TRUNC
THRESH_TOZERO和THRESH_TOZERO_INV
import cv2import numpy as npimg=cv2.imread('./2037551.jpg')img1=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)ret,dst=cv2.threshold(img,180,255,cv2.THRESH_BINARY)cv2.imshow('img',img)
cv2.imshow('gray',img1)
#cv2.imshow('bin',bin)cv2.waitKey(0)

二 阈值类型

thresholdType
在这里插入图片描述

三 自适应阈值

由于光照不均匀以及阴影的存在,只有一个阈值会使得在阴影处的白色被二值化成黑色。

adaptiveThresholdAPI

adaptiveThreshold(img,maxVal,adaptiveMethod,type,blockSie,C)
adaptiveMethod:计算阈值的方法
blockSize:邻近区域的大小
C:常量,应从计算出的平均值或加权平均值中减去;
adaptiveMethod
计算阈值的方法
ADAPTIVE_THRESH_MEAN_C:计算领近区域的平均值
ADAPIVE_THRESH_GAUSSIAN_C:高斯窗口加权平均值
Type:THRESH_BINARY,THRESH_BINARY_INV
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')
img1=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)dst=cv2.adaptiveThreshold(img1,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,11,0)print(dst.shape)cv2.imshow('img',img)
cv2.imshow('img1',img)
cv2.imshow('dst',dst)cv2.waitKey(0)

四 腐蚀

在这里插入图片描述

1 腐蚀运算在这里插入图片描述

2 腐蚀效果

在这里插入图片描述

3 腐蚀API

erode(img,kernel,iterations=1)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=np.ones((3,3),np.uint8)dst=cv2.erode(img,kernel,iterations=1)cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)

六 获取形态学卷积核

卷积核的类型

getStructuringElement(type,size)
Size值为:3:3)、(5,5...
MORPH_RECT
MORPH_ELLIPSE
MORPH_CROSS

七 OPenCV 膨胀

膨胀运算
在这里插入图片描述

1 膨胀效果

在这里插入图片描述

2 膨胀API

dilate(img,kernel,iterations=1)

问题
如果是白底黑字,进行腐蚀与膨胀后会怎样?
卷积核是否可以设置为全0?

八 开运算

开运算=腐蚀+膨胀

开运算效果
在这里插入图片描述
开运算API

morphologyEx(img,EORPH_OPEN,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(7,7))#dst=cv2.erode(img,kernel,iterations=1)#膨胀
#dst1=cv2.dilate(img,kernel,iterations=1)dst1=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
#cv2.imshow('dst',dst)
cv2.imshow('dst1',dst1)
cv2.waitKey(0)

九 闭运算

闭运算效果
在这里插入图片描述
闭运算API

morphology(img,MORPH_CLOSE,kernel)

十 形态学剃度

梯度=原图-腐蚀

梯度效果图

梯度API

morphologyEx(img,MORPH_GRADIENT,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(7,7))#梯度
dst1=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)cv2.imshow('img',img)
cv2.imshow('dst',dst1)
cv2.waitKey(0)

十一 顶帽运算

顶帽=原图-开运算

顶帽效果图
在这里插入图片描述
顶帽API

morphologyEx(img,MORPH_TOPHAT,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(19,19))#顶帽
dst1=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel)cv2.imshow('img',img)
cv2.imshow('dst',dst1)
cv2.waitKey(0)

十二 黑帽运算

黑帽=原图-闭运算

黑帽效果图
在这里插入图片描述
黑帽API

morphologyEx(img,MORPH_BLACKHAT,kernel)
import cv2
import numpy as npimg=cv2.imread('./2037551.jpg')kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(19,19))#顶帽
dst1=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel)cv2.imshow('img',img)
cv2.imshow('dst',dst1)
cv2.waitKey(0)

相关文章:

OpenCV形态学

什么事形态学处理 基于图像形态进行处理的一些基本方法; 这些处理方法基本是对二进制图像进行处理; 卷积核决定着图像出来后的效果。 一 图像二值化 什么是二值化 将图像的每个像素变成两种值,如0,255. 全局二值化。 局部二值化。 thres…...

首途第三十三套清新简约卡片风格蓝紫渐变色短视频模板 | 苹果CMSV10主题

下载地址:首途第三十三套清新简约卡片风格蓝紫渐变色短视频模板 | 苹果CMSV10主题 首途第三十三套清新简约卡片风格蓝紫渐变色短视频模板 | 苹果CMSV10主题 我们的简约风格,以纯洁的白色和深邃的紫色为主色调,为您提供了一种清新、时尚的浏览…...

永磁同步直线电机(PMLSM)控制与仿真2-永磁同步直线电机数学模型搭建

文章目录 1、公式总结2、电压方程模型3、运动方程4、推力方程5、转化关系 写在前面:原本为一篇文章写完了永磁同步直线电机数学模型介绍,永磁同步直线电机数学模型搭建,以及永磁同步直线电机三环参数整定及三环仿真模型搭建,但因为…...

MPLS VPN一

R1为客户,现在进行一些基本配置,来确保可以通路由 先启动OSPF跑通 在R3上 等一会 现在启动MPLS 对R3 对R4 然后在R2上 再把接口划到空间里面 原来的IP在公网里面,被清除了 然后再配置接口 查看 对R1(相当于客户) …...

39python数据分析numpy基础之h5py读写数组数据到h5文件

1 python数据分析numpy基础之h5py读写数组数据到h5文件 HDF5(分层数据格式文件)是Hierarchical Data Format Version 5的缩写,是一种用于存储和管理大数据的文件格式。经历了20多年的发展,HDF格式的最新版本是HDF5,它包含了数据模型&#xf…...

2024全新仿麻豆视频苹果cms源码v10影视模板

下载地址:2024全新仿麻豆视频苹果cms源码v10影视模板 高端大气的设计,适合做电影、连续剧、综艺、动漫、微电影、纪录片、海外剧等视频网站...

这世上又多了一只爬虫(spiderflow)

让我们一起默念: 爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫爬虫 接着大声喊出来: 一!只!爬!虫!呀!爬!呀!爬&#xf…...

SpringMVC框架学习笔记(七):处理 json 和 HttpMessageConverter 以及文件的下载和上传

1 处理 JSON-ResponseBody 说明: 项目开发中,我们往往需要服务器返回的数据格式是按照 json 来返回的 下面通过一个案例来演示SpringMVC 是如何处理的 (1) 在web/WEB-INF/lib 目录下引入处理 json 需要的 jar 包,注意 spring5.x…...

八、BGP

目录 一、为何需要BGP? 二、BGP 2.1、BGP邻居 2.2、BGP报文 2.3、BGP路由 2.4、BGP通告遵循原则 2.5、BGP实验 第一步:建立邻居 第二步:引入路由 BGP路由黑洞 路由黑洞解决方案 1、IBGP全互联 2、路由引入 3、MPLS 多协…...

有监督学习——支持向量机、朴素贝叶斯分类

1. 支持向量机 支持向量机(Support Vector Machine, SVM)最初被用来解决线性问题,加入核函数后能够解决非线性问题。主要优点是能适应小样本数量 高维度特征的数据集,甚至是特征维度数高于训练样本数的情况。 先介绍几个概念&am…...

自动化测试文档

自动化测试文档的类型 自动化测试方案: 目的:描述自动化测试的目标、范围、方法、资源等。内容:通常包含测试计划、测试用例设计、测试环境配置、测试执行策略、预期结果、风险评估等。自动化测试脚本: 目的:用于执行…...

vue-i18n使用步骤详解(含完整操作步骤)

开篇 下面是从创建vue项目开始,完整使用i18n实现国际化功能的步骤,希望对您有所帮助。 完整步骤 创建项目 创建项目,并在创建项目的时候选择vuex,router 选择3.x版本 后面随意选即可,下面是完整的代码结构 安装vue-i18n,并封装…...

XXE漏洞修补:保护您的系统免受XML外部实体攻击

引言 XML外部实体(XXE)漏洞是一种常见的网络安全问题,它允许攻击者通过XML文档中的实体引用读取服务器上的文件或发起远程服务器请求。这种漏洞可能被用于数据泄露、拒绝服务攻击(DoS)甚至远程代码执行。本文将探讨XX…...

去除upload的抖动效果

title: 去除upload的抖动效果 date: 2024-06-15 20:16:51 tags: vue3 在使用vue3element-plus框架的时候,常常会使用到el-upload方法。其中如果做了翻页效果可以发现图片过度方式是集中到左上角进行的翻页,这种效果不是很好,我们还是想让这中…...

什么是 Linux ?(Linux)

系列文章目录 第一章 什么是Linux? 文章目录 系列文章目录一、什么是 Linux ?二、Linux 的发行版本总结 一、什么是 Linux ? Linux(Linux Is Not UniX),是一种免费使用和自由传播的类UNIX操作系统&#x…...

uni-app 怎么在tabbar使用阿里图标库

提示:微信小图标不支持使用字体图标的方式,只能下载png 方法一:直接下载png图片 我们首选打开阿里矢量图标库 链接在下方 👇 iconfont-阿里巴巴矢量图标库iconfont-国内功能很强大且图标内容很丰富的矢量图标库,提供矢…...

勒索病毒剖析

2016年不自己勒索了 卖病毒 让别人勒索 傻瓜式勒索 黑客用的是非对称加密 全世界只有黑客有那把私钥 反向解密不了 传统爆破容易被检测,黑客慢速爆破,利用超级多的僵尸进行试错,慢慢试出来账号密码 因为一般运维设备在防火墙的白名单里&…...

【C++11】第一部分(一万六千多字)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 C11简介 统一的列表初始化 {}初始化 std::initializer_list 声明 auto decltype 右值引用和移动语义 左值引用和右值引用 左值引…...

FPGA专项课程即将开课,颁发AMD官方证书

社区成立以来,一直致力于为广大工程师提供优质的技术培训和资源,得到了众多用户的喜爱与支持。为了满足用户需求,我们特别推出了“基于Vitis HLS的高层次综合及图像处理开发”课程。 本次课程旨在帮助企业工程师掌握前沿的FPGA技术&#xff…...

C++ shared_ptr

shared_ptr共享它指向的对象,多个shared_ptr可以指向(关联)相同的对象,在内部采用计数机制来实现。 当新的shared_ptr与对象关联时,引用计数增加1。 当shared_ptr超出作用域时,引用计数减1。当引用计数变为…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

离线语音识别方案分析

随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork(创建个人副本)步骤 2: Clone(克隆…...

Netty自定义协议解析

目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...