当前位置: 首页 > news >正文

面试-NLP八股文

机器学习

  • 交叉熵损失: L = − ( y l o g ( y ^ ) + ( 1 − y ) l o g ( 1 − ( y ^ ) ) L=-(ylog(\hat{y}) + (1-y)log(1-(\hat{y})) L=(ylog(y^)+(1y)log(1(y^))
  • 均方误差: L = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 L =\frac{1}{n}\sum\limits_{i=1}^{n}(y_{i} - \hat{y}_{i})^{2} L=n1i=1n(yiy^i)2
  • BPR损失: L = ∑ ( u , i , j ) ∈ O − l n σ ( y ^ u i − y ^ u j ) L=\sum_{(u,i,j) \in O} -ln\sigma(\hat{y}_{ui} - \hat{y}_{uj}) L=(u,i,j)Ol(y^uiy^uj)
  • 最大似然估计:是一种在给定结果的情况下,使得选择的参数值观测到该结果的概率最大
  • 交叉熵:衡量两个概率分布p和q之间差异的指标;最大化似然函数等价于最小化交叉熵
  • LR和SVM的异同
    • LR是逻辑回归模型,在最后的结果上应用了sigmoid函数得到分布概率
    • SVM是为了寻找一个最优超平面,使得训练样本离该超平面的间隔最大化
    • 高斯核函数的核心思想是将样本数据进行升维,从而使得原本线性不可分的数据线性可分
    • 同:
      • LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题
      • 两个方法都可以增加不同的正则化项,如L1、L2正则化
      • LR和SVM都可以用来做非线性分类,只要加核函数就好
    • 异:
      • LR是参数模型,SVM是非参数模型
      • 逻辑回归采用的是cross-entropy loss,SVM采用的是hinge loss
      • SVM分类只需要计算与少数几个支持向量的距离,而LR和所有点都有关系
  • L1L2的特点
    • 正则化是防止模型在训练数据上过度拟合的技术,即通过在模型的损失函数中引入额外的惩罚项,来对模型的参数进行约束,从而降低模型的复杂度(使数值变小)
    • L1是权重参数的绝对值之和
    • L2是权重参数的平方,L2正则化又称为权重衰减
  • dropout在训练过程中随机将部分神经元权重置为零
  • Layer Normalization与Batch Normalization
    • 归一化是把数据特征映射到固定范围,以避免由于输入特征尺度存在较大差异,而使模型的优化方向可能会被尺度较大的特征所主导
    • BN层(Batch Normalization):是在不同样本之间进行归一化
    • LN层(Layer Normalization):是在同一样本内部进行归一化
  • 如何缓解梯度消失问题
    • 梯度趋近于零,网络权重无法更新或更新的很微小,网络训练再久也不会有效果
    • 解决办法:选择合适的激活函数;批量归一化;使用残差网络
  • 如何缓解梯度爆炸问题
    • 梯度呈指数级增长,变的非常大,然后导致网络权重的大幅更新,使网络变得不稳定
    • 解决办法:选择合适的权重初始化;梯度裁剪
  • 防止过拟合的手段(训练时效果好,测试时效果拉)
    • 增加训练数据量,或数据增强
    • 简化模型结构
    • 早停策略
    • Dropout技术
    • 正则化方法
  • Adam算法能够根据不同参数的梯度特性自适应地调整学习率。对于梯度较大的参数,学习率会相应减小,以避免参数更新过快导致震荡;对于梯度较小的参数,学习率会相应增大,以加速收敛。Adam优化器是由Momentum动量梯度与RMSProp算法构成
  • 交叉验证:其基本思想是将数据分为K个互不重叠的子集(通常称为“折”),每次选取其中K-1个子集作为训练集,剩下的一个子集作为测试集,进行模型训练和评估。这个过程会重复K次,每次选择不同的子集作为测试集,最后将所有的测试结果求平均值。
  • KNN是根据某一样本点距离最近的 K 个样本点的类别来判断该样本属于哪个类别(多数投票)
  • K-means是无监督学习算法。根据输入无标签的数据,然后将数据聚类成不同的组。做法:随机初始化质心->计算每个数据点到每个质心的距离->根据距离将数据点到簇->重新计算簇的质心,重复这一过程直到质心不再变化或达到预定的迭代次数。
  • 决策树是一种树形结构,主要用于分类,易过拟合,需要剪枝算法
  • 随机森林是将多个决策树结合在一起,每次数据集是随机有放回的选出,而选出部分特征作为输入,最后将多个树的结果整合起来当作最后的结果输出。
  • 归一化(Normalization)是将一列数据变化到某个固定区间(范围)中,通常,这个区间是[0, 1] 或者(-1,1)之间的小数
  • 标准化(Standardization)是原始数据减均值之后,再除以标准差。将数据变换为均值为0,标准差为1的分布

深度学习

  • Embedding技术是将单词转换为固定长度的向量

    • 作用(独热编码相比):可以解决维度灾难,即独热编码(One-hot )导致的维度激增;解决词汇鸿沟,即独热编码不能表达词汇之间的联系
    • 基于内容的word2vec方法是最经典的,其中包含框架CBOW连续词袋模型(Continuous Bag of Words)和Skip-gram跳字模型
      • CBOW预设好窗口大小,利用窗口内的上下文来预测目标词。

        • 模型输入是上下文词汇的One-hot编码;经过Embedding层,即词汇编码各自和嵌入矩阵相乘,得到词向量;然后计算上下文词向量的平均值;再输入线性层,得到输出向量;输入softmax层得到概率分布,最大概率位置对应的词即为预测结果;
        • 在这里插入图片描述
      • Skip-gram跳字模型为CBOW的逆过程

        • 模型输入是目标词的独热编码向量;经过in嵌入层,得到隐藏层;再经过out嵌入层得到输出向量;输入softmax层得到字典中每个词汇是目标词上下文的概率
        • 在这里插入图片描述
  • 文本关键词抽取

    • textrank把文本拆分成词汇作为图节点, 然后对节点权重进行倒序排列,得到排名前TopN个词汇作为文本关键词
      • 节点间权重计算方式:两个节点之间仅当它们对应的词汇在长度为K的窗口中共现则存在边,K表示窗口大小即最多共现K个词汇
    • tf-idf
      • 词频(Term Frequency,TF)指某一给定词语在当前文件中出现的频率。 词频 ( T F ) = 词 w 在文档中出现的次数 文档的总词数 词频(TF)=\frac{词w在文档中出现的次数}{文档的总词数} 词频(TF)=文档的总词数w在文档中出现的次数
      • 逆向文件频率(Inverse Document Frequency,IDF)是一个词语普遍重要性的度量。即如果一个词语只在很少的文件中出现,表示更能代表文件的主旨,它的权重也就越大;如果一个词在大量文件中都出现,表示不清楚代表什么内容,它的权重就应该小。 逆文档频率 ( I D F ) = l o g ( 语料库的文档总数 包含词 w 的文档数 + 1 ) 逆文档频率(IDF)=log(\frac{语料库的文档总数}{包含词w的文档数+1}) 逆文档频率(IDF)=log(包含词w的文档数+1语料库的文档总数)
      • 关键字抽取方式:计算所有词的TF-IDF=TF*IDF,对计算结果进行倒序排列,得到排名前TopN个词汇作为文本关键词
  • CNN有卷积核,池化层,线性层。计算公式: N = W − F + 2 P S + 1 N=\frac{W-F+2P}{S} + 1 N=SWF+2P+1

  • RNN模型(处理序列数据)

    • 存在长期依赖缺失的问题:在处理长时间问题时,由于梯度消失造成的较远信息对此时几乎不产生影响
    • 长短期神经网络LSTM和门控循环单元GRU可以解决长距离依赖缺失问题
    • LSTM有遗忘门(决定遗忘的信息),输入门(更新细胞状态),输出门(由隐藏表示,输入变量,细胞状态决定)
    • GRU是在LSTM的基础上提出的,与LSTM相比取消了细胞状态向量,门控结构也减少了,简化了LSTM的结构并提高其计算效率
  • Transformer模型是基于自注意力机制的深度神经网络模型,提高了计算效率,并更好地捕捉长距离依赖关系

    • Positional Encoding: 区分单、双数,利用正、余弦函数进行位置编码
    • Multi-Head Attention:多头注意力机制是一种扩展自注意力机制的方法,它将自注意力机制分解为多个“头”,每个“头”都在不同的表示空间中学习信息,从而能够捕捉到更丰富的特征和关系,保证了可以学习到一个词的多个语义
      • A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T d k ) V Attention(Q, K, V) = Softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V Attention(Q,K,V)=Softmax(dk QKT)V
      • ∗ d k \frac{*}{\sqrt{d_{k}}} dk :首先要除以一个数,防止输入softmax的值过大,导致偏导数趋近于0;其次选择根号d_k是因为可以使得q*k的结果满足期望为0,方差为1的分布。
      • 掩码操作Mask: 包含Padding Mask和Sequence Mask两种。掩码就是让矩阵某些元素变为负无穷的数,使得其在后续Softmax中的概率为0。其中Padding Mask旨在消除输入序列中Padding的影响;而Sequence Mask只存在于解码器中,目的是在预测下一个词时,覆盖住后面的词汇注意力信息,达到只用前面序列来预测下一词的目的
    • FFN模块是为了增加模型的非线性能力(因为内部使用的激活函数)
    • NLP中Layer Normalization针对句内每个单词归一,Batch Normalization针对batch内同一位置单词的不同特征归一
  • 模型的评价指标

    • TP(true positive-真阳性):表示样本的真实类别为正,最后预测得到的结果也为正;FP(false positive-假阳性):表示样本的真实类别为负,最后预测得到的结果却为正;FN(false negative-假阴性):表示样本的真实类别为正,最后预测得到的结果却为负;TN(true negative-真阴性):表示样本的真实类别为负,最后预测得到的结果也为负
    • 准确率表示预测正确的样本数占总样本书的比例。 A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN
    • 精确率表示预测为正样本的样本中,正确预测为正样本的概率。 P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP
    • 召回率表示正确预测出正样本占实际正样本的概率。 R e c a l l = T P T P + F N Recall=\frac{TP}{TP+FN} Recall=TP+FNTP
    • F1 score折中了召回率与精确率。 F 1 = 2 ∗ R e c a l l ∗ P r e c i s i o n R e c a l l + P r e c i s i o n F1=2*\frac{Recall*Precision}{Recall+Precision} F1=2Recall+PrecisionRecallPrecision
    • HR (命中率-Hits Ratio)预测正确的用户占所有用户的比例,强调预测的“准确性”。 H R = 1 N ∑ i = 1 N h i t s ( i ) HR=\frac{1}{N}\sum\limits_{i=1}^{N}hits(i) HR=N1i=1Nhits(i)
    • MRR (平均倒数排名-Mean Reciprocal Rank)表示待推荐的项目是否放在了用户更显眼的位置,强调“顺序性”。 M R R = 1 N ∑ i = 1 N 1 p i MRR=\frac{1}{N}\sum\limits_{i=1}^{N}\frac{1}{p_{i}} MRR=N1i=1Npi1 p i p_{i} pi表示第 i 个用户的真实访问值在推荐列表的位置
    • NDCG(归一化折损累计增益-Normalized Discounted Cumulative Gain)用于判断对于一个用户,返回的推荐item列表是否更好
      • Gain:一个列表中所有item的相关性分数。 G a i n = r e l ( i ) Gain=rel(i) Gain=rel(i)
      • Cumulative Gain: 表示对K个item的Gain进行累加(没有考虑顺序)。 C G k = ∑ i = 1 k r e l ( i ) CG_{k} = \sum\limits_{i=1}^{k} rel(i) CGk=i=1krel(i)
      • Discounted Cumulative Gain:考虑排序顺序的因素,使得排名靠前的item增益更高,对排名靠后的item进行折损。 D C G k = ∑ i = 1 k r e l ( i ) l o g 2 ( i + 1 ) DCG_{k}=\sum\limits_{i=1}^{k} \frac{rel(i)}{log_{2}(i+1)} DCGk=i=1klog2(i+1)rel(i)
      • IDGC(ideal DCG):理想的DCG,IDCG的依据是:是根据rel(i)降序排列,即排列到最好状态。算出最好排列的DCG,就是IDCG。 N D C G = D C G I D C G NDCG=\frac{DCG}{IDCG} NDCG=IDCGDCG
  • 残差结构及意义:在结果上加输入,防止梯度消失和网络退化

  • Bert是由多个Transformer Encoder一层一层地堆叠起来

    • Embedding由三种Embedding求和而成
      • Token Embeddings:针对单词,会在开头加入CLS,结尾加入SEP
      • Segment Embeddings:区别两种句子,前句赋0,后句赋1
      • Position Embeddings:针对位置,不同于Transformer使用正余弦函数,bert随机初始化位置嵌入。前者只能标记位置,后者不仅可以标记位置,还可以学习到这个位置有什么用。
    • 长度限制为512

简单代码

  • 数据结构里面的算法,手撕就好(例如:—句话说快排)
  • 每一个数有一个概率,要求写一个随机数发生器,使随机数产生概率符合要求
  • 最大子矩形面积,(记得是leetcode原题,大家可以去看一下)
  • 判断数独是否是有效数独(行、列、每个3*3矩阵判断)
  • 矩阵中正方形最大面积
  • 2D接雨水

相关文章:

面试-NLP八股文

机器学习 交叉熵损失: L − ( y l o g ( y ^ ) ( 1 − y ) l o g ( 1 − ( y ^ ) ) L-(ylog(\hat{y}) (1-y)log(1-(\hat{y})) L−(ylog(y^​)(1−y)log(1−(y^​))均方误差: L 1 n ∑ i 1 n ( y i − y ^ i ) 2 L \frac{1}{n}\sum\limits_{i1}^{n}…...

数据仓库之离线数仓

离线数据仓库(Offline Data Warehouse)是一种以批处理方式为主的数据仓库系统,旨在收集、存储和分析大量历史数据。离线数据仓库通常用于定期(如每日、每周、每月)更新数据,以支持各种业务分析、报表生成和…...

Mybatis源码解析

MybatisAutoConfiguration或者MybatisPlusAutoConfiguration核心作用是初始化工厂类SqlSessionFactory,其中包含属性interceptors、MapperLocations、TypeAliasesPackage、TypeEnumsPackage、TypeHandlers等。 MybatisAutoConfiguration自动装配类是由依赖&#xf…...

前端学习CSS之神奇的块浮动

在盒子模型的基础上就可以对网页进行设计 不知道盒子模型的可以看前面关于盒子模型的内容 而普通的网页设计具有一定的原始规律,这个原始规律就是文档流 文档流 标签在网页二维平面内默认的一种排序方式,块级标签不管怎么设置都会占一行,而同一行不能放置两个块级标签 行级…...

【Java】内部类、枚举、泛型

目录 1.内部类1.1概述1.2分类1.3匿名内部类(重点) 2.枚举2.1一般枚举2.2抽象枚举2.3应用1:用枚举写单例2.4应用2:标识常量 3.泛型3.1泛型认识3.2泛型原理3.3泛型的定义泛型类泛型接口泛型方法 3.4泛型的注意事项 1.内部类 1.1概述 内部类:指…...

LabVIEW电子类实验虚拟仿真系统

开发了基于LabVIEW开发的电子类实验虚拟仿真实验系统。该系统通过图形化编程方式,实现了复杂电子实验操作的虚拟化,不仅提高了学生的操作熟练度和学习兴趣,而且通过智能评价模块提供即时反馈,促进教学和学习的互动。 项目背景 在…...

SVM支持向量机

SVM的由来和概念 间隔最大化是找最近的那个点的距离’ 之前我们学习的都是线性超平面,现在我们要将超平面变成圈 对于非线性问题升维来解决 对于下图很难处理,我们可以将棍子立起来,然后说不定red跑到左边了,green跑到右边了(可能增加了某种筛选条件导致两个豆子分离)(只是一种…...

【Unity】RPG2D龙城纷争(二)关卡、地块

更新日期:2024年6月12日。 项目源码:后续章节发布 索引 简介地块(Block)一、定义地块类二、地块类型三、地块渲染四、地块索引 关卡(Level)一、定义关卡类二、关卡基础属性三、地块集合四、关卡初始化五、关…...

mediamtx流媒体服务器测试

MediaMTX简介 在web页面中直接播放rtsp视频流,重点推荐:mediamtx,不仅仅是rtsp-CSDN博客 mediamtx github MediaMTX(以前的rtsp-simple-server)是一个现成的和零依赖的实时媒体服务器和媒体代理,允许发布,读取&…...

C# 循环

C# 循环 在编程中,循环是一种控制结构,它允许我们重复执行一段代码多次。C# 提供了几种循环机制,以适应不同的编程需求。本文将详细介绍 C# 中常用的几种循环类型,包括 for 循环、while 循环、do-while 循环和 foreach 循环&…...

PHP杂货铺家庭在线记账理财管理系统源码

家庭在线记帐理财系统,让你对自己的开支了如指掌,图形化界面操作更简单,非常适合家庭理财、记账,系统界面简洁优美,操作直观简单,非常容易上手。 安装说明: 1、上传到网站根目录 2、用phpMyad…...

机器学习中的神经网络重难点!纯干货(上篇)

. . . . . . . . .纯干货 . . . . . . 目录 前馈神经网络 基本原理 公式解释 一个示例 卷积神经网络 基本原理 公式解释 一个示例 循环神经网络 基本原理 公式解释 一个案例 长短时记忆网络 基本原理 公式解释 一个示例 自注意力模型 基本原理…...

[DDR4] DDR1 ~ DDR4 发展史导论

依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解DDR4》 内存和硬盘是电脑的左膀右臂, 挑起存储的大梁。因为内存的存取速度超凡地快, 但内存上的数据掉电又会丢失,一直其中缓存的作用,就像是我们的工…...

享元和代理模式

文章目录 享元模式1.引出享元模式1.展示网站项目需求2.传统方案解决3.问题分析 2.享元模式1.基本介绍2.原理类图3.外部状态和内部状态4.类图5.代码实现1.AbsWebSite.java 抽象的网站2.ConcreteWebSite.java 具体的网站,type属性是内部状态3.WebSiteFactory.java 网站…...

[英语单词] ellipsize,动词化后缀 -ize

openvswitch manual里的一句话:里面有使用ellipsize,但是查字典是没有这个单词,这就是创造出来的动词。将单词ellipsis,加动词化后缀,-ize。 Often we ellipsize arguments not important to the discussion, e.g.: &…...

自然资源-测绘地信专业术语,值得收藏!

自然资源-测绘地信专业术语,值得收藏! 1、1954年北京坐标系 1954年我国决定采用的国家大地坐标系,实质上是由原苏联普尔科沃为原点的1942年坐标系的延伸。 2、1956年黄海高程系统 根据青岛验潮站1950年一1956年的验潮资料计算确定的平均海面…...

如何在小程序中实现页面之间的返回

在小程序中实现页面之间的返回,通常有以下几种方法,这些方法各有特点,适用于不同的场景: 1. 使用wx.navigateBack方法 描述:wx.navigateBack是微信小程序中用于关闭当前页面,返回上一页面或多级页面的API…...

深入解析数据结构之B树:平衡树中的王者

在计算机科学中,数据结构是算法和程序设计的基础。而在众多数据结构中,B树作为一种平衡树,在数据库和文件系统中有着广泛应用。本文将详细介绍B树的概念、特点、操作、优缺点及其应用场景,帮助读者深入理解这一重要的数据结构。 …...

18. 第十八章 继承

18. 继承 和面向对象编程最常相关的语言特性就是继承(inheritance). 继承值得是根据一个现有的类型, 定义一个修改版本的新类的能力. 本章中我会使用几个类来表达扑克牌, 牌组以及扑克牌性, 用于展示继承特性.如果你不玩扑克, 可以在http://wikipedia.org/wiki/Poker里阅读相关…...

OperationalError: (_mysql_exceptions.OperationalError)

OperationalError: (_mysql_exceptions.OperationalError) (2006, MySQL server has gone away) 这个错误通常表示客户端(例如你的 Python 程序使用 SQLAlchemy 连接到 MySQL 数据库)和 MySQL 服务器之间的连接被异常关闭了。这个问题可能由多种原因引起,以下是一些常见的原…...

DocGraph相关概念

结合简化版的直观性和专业版的深度,我们可以得到一个既易于理解又包含专业细节的DocGraph概念讲解。 DocGraph概述(简化版) 想象DocGraph就像是文章信息的地图。它通过拆分文档、识别关键词、分析关系,并最终以图形方式呈现这些…...

MySQL限制登陆失败次数配置

目录 一、限制登陆策略 1、Windows 2、Linux 一、限制登陆策略 1、Windows 1)安装插件 登录MySQL数据库 mysql -u root -p 执行命令安装插件 #限制登陆失败次数插件 install plugin CONNECTION_CONTROL soname connection_control.dll;install plugin CO…...

洛谷题解 - P1192 台阶问题

目录 题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示代码 题目描述 有 N N N 级台阶,你一开始在底部,每次可以向上迈 1 ∼ K 1\sim K 1∼K 级台阶,问到达第 N N N 级台阶有多少种不同方式。 输入格式 两个正整数 N , K …...

Unity贪吃蛇改编【详细版】

Big and small greedy snakes 游戏概述 游戏亮点 通过对称的美感,设置两条贪吃蛇吧,其中一条加倍成长以及加倍减少,另一条正常成长以及减少,最终实现两条蛇对整个界面的霸占效果。 过程中不断记录两条蛇的得分情况&#xff0c…...

React中数据响应式原理

React作为当下最流行的前端框架之一,以其声明式编程和组件化架构而广受开发者喜爱。而React的数据响应式原理,是其高效更新DOM的核心机制。本文将深入探讨React中数据响应式原理,并结合代码示例进行论证。 响应式原理概述 在React中&#x…...

【FreeRTOS】ARM架构汇编实例

目录 ARM架构简明教程1. ARM架构电脑的组成1.2 RISC1.2 提出问题1.3 CPU内部寄存器1.4 汇编指令 2. C函数的反汇编 学习视频 【FreeRTOS入门与工程实践 --由浅入深带你学习FreeRTOS(FreeRTOS教程 基于STM32,以实际项目为导向)】 https://www.…...

【Linux】常见指令的使用

文章目录 which指令stat 指令wc指令echo指令tree 指令whoami指令clear指令alias指令ls指令pwd指令cd 指令touch指令mkdir指令(重要)rmdir指令 && rm 指令(重要)man指令(重要)cp指令(重要…...

C#面:详细阐述什么是 DTO

DTO(Data Transfer Object)是一种设计模式,用于在不同层之间传输数据。它的主要目的是在应用程序的不同部分之间传递数据,而不是直接传递实体对象。DTO通常是一个简单的POCO(Plain Old CLR Object)&#xf…...

「TCP 重要机制」三次握手四次挥手

🎇个人主页:Ice_Sugar_7 🎇所属专栏:计网 🎇欢迎点赞收藏加关注哦! 三次握手&四次挥手 🍉连接管理🍌三次握手🍌意义🍌四次挥手🍌TCP 状态转换…...

Java数据库编程

引言 在现代应用开发中,与数据库交互是不可或缺的一部分。Java提供了JDBC(Java Database Connectivity) API,允许开发者方便地连接到数据库并执行SQL操作。本文将详细介绍Java数据库编程的基础知识,包括JDBC的基本概念…...

做网站无需备案/做网站企业

本篇文章给大家带来的内容是关于如何清理浮动?清除浮动的4种方式,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。套路1:给浮动元素的父元素添加高度(扩展性不好)如果一个元素要浮动,那么它…...

湘潭响塘乡建设局网站/武汉百度推广外包

龙芯事件、又是个汉芯的后继翻版<?xml:namespace prefix o ns "urn:schemas-microsoft-com:office:office" />龙芯事件、又是个汉芯的后继翻版&#xff0c;只是内容比上版充实一些。龙芯事件&#xff0c;无疑又是在十三亿国人脸上重重煽了一个耳光&#xff…...

wordpress主题king/html制作网站

综上&#xff0c;当监测的fd数量较小&#xff0c;且各个fd都很活跃的情况下&#xff0c;建议使用select和poll&#xff1b;当监听的fd数量较多&#xff0c;且单位时间仅部分fd活跃的情况下&#xff0c;使用epoll会明显提升性能。 select系统调用 select函数 1&#xff09;nfds…...

查询域名注册网站/中小企业网络推广

1. PE文件的资源是以树形结构存储的。2. 资源目录&#xff1a; typedef struct { DWORD Characteristics; DWORD TimeDateStamp; WORD MajorVersion; WORD MinorVersion; WORD NumberOfNamedEntries; WORD NumberOfIdEn…...

昆明企业免费建站/营销推广文案

如果可以有一家公司在移动互联网领域击败苹果&#xff0c;那么应该只有Google&#xff01; 苹果对本地应用的死忠正是web之王Google的矛头所指。一份分析指出&#xff0c;web和html5将在接下来的四年里面将苹果的经营利润削掉30%&#xff0c;因为应用开发者们正在开发跨设备的…...

做淘客网站用备案吗/交换链接营销的典型案例

1.jboss和cxf不兼容&#xff0c;最好集成axis&#xff0c;需要在WEB-INF下增加下面文件&#xff0c;文件配置 <?xml version"1.0" encoding"UTF-8"?> <deployment xmlns"http://xml.apache.org/axis/wsdd/" xmlns:java"http://x…...