当前位置: 首页 > news >正文

智能体(Agent)实战——从gpts到auto gen

一.GPTs

        智能体以大模型作为大脑,同时配备技能,使其能够完成具体的任务。同时,为了应用于垂直领域,我们需要为大模型定义一个角色,并构建知识库。最后,定义完整的流程,使其完成整个任务。以组会汇报的智能体为例,定义如下

        

1.创建自己的gpt

2.角色定义

        该 Agent 是一种智能化助理,专为研究人员和学生设计,用于调研计算机领域顶级会议的论文。它能够自动访问各大顶级会议网站,搜索并下载相关论文,并对论文内容进行整理分析,最终生成易于理解的思维导图。这些思维导图旨在帮助用户快速把握论文的核心内容、研究方法、实验结果和研究意义。

3.任务流程

步骤 1: 搜索顶级会议论文

  • 技能使用#2N GoogleSearch
  • 操作:使用 GoogleSearch 技能根据用户指定的关键词进行搜索,找到相关的顶级会议论文列表。

步骤 2: 获取论文链接和内容

  • 技能使用#2K ReadArXiv
  • 操作:对于在 arXiv 上可找到的论文,使用 ReadArXiv 技能通过提供的 arXiv 链接直接获取论文的内容。

步骤 3: 提取论文的文本内容

  • 技能使用#2J ReadWebpage
  • 操作:对于非 arXiv 的论文,使用 ReadWebpage 技能从会议官网或其他来源抓取论文的全文内容。

步骤 4: 生成思维导图

  • 技能使用#2H GenerateMindMap
  • 操作:将步骤 3 中获取的文本内容输入到 GenerateMindMap 技能中,自动创建出基于论文内容的思维导图。

步骤 5: 结果呈现

  • 技能使用:无需额外技能。
  • 操作:将生成的思维导图显示给用户,用户可以直接查看或下载。

 

 4.技能配置

网站:Gapier: Free Actions for ChatGPT Users|custom gpts|ChatGPT Actions|GPTs Actions

添加技能:

 添加API秘钥

导入URL

 测试API能否使用

 其他提供技能API的网站

(1)语聚AI

语聚AI:汇聚语言与AI的力量

(2) 官方网站提供的接口

例如:stable diffusion

2.Auto Gen

(1) 环境配置

需要新建一个环境,python一定要是3.10以上

即:

conda create -n agent python==3.10

conda activate agent

pip install autogenstudio

启动服务

autogenstudio ui --port 8081

(2)配置GPT-4的key

在安装agent环境目录下配置GPT-4的key

F:\Anaconda\envs\agent\Lib\site-packages\openai

国内中转GPT4-key的获取

GPT4.0 API KEY By OPENAI HK 中转ChatGPT

https://www.jcapikey.com/register?aff=JQLr 

如果部署本地大模型,只需要指定base_url 

 (3)配备技能

实例1:使用飞书作为技能

获取API并查看参数。docx/O738dALTAoNPQBxnFwNcTnYKnPb

对应的python代码,需要document_id和user_access_token

import requestsdef get_feishu(doc_id):""":param doc_id: 输入需求文档编号:return: 返回文档对应文字内容"""url = f"https://open.feishu.cn/open-apis/docx/v1/documents/{doc_id}/raw_content?lang=0"payload = ''headers = {'Authorization': 'Bearer u-dJELIIPZ13paEMIal.HHWY455jq5l5jFj0G011M029Gk'}response = requests.request("GET", url, headers=headers, data=payload)print(response.text)return response.textget_feishu('BYtpdYql5oVwvzxmzvFcLGG8nNW')

将上面的函数添加到技能中

案例2:配备抖音

使用语聚AI连接抖音的接口

语聚AI

(4)配置智能体

 (5)定义流程

相关文章:

智能体(Agent)实战——从gpts到auto gen

一.GPTs 智能体以大模型作为大脑,同时配备技能,使其能够完成具体的任务。同时,为了应用于垂直领域,我们需要为大模型定义一个角色,并构建知识库。最后,定义完整的流程,使其完成整个任务。以组会…...

PyTorch 张量数据类型

【数据类型】Python 与 PyTorch 常见数据类型对应: 用 a.type() 获取数据类型,用 isinstance(a, 目标类型) 进行类型合法化检测 >>> import torch >>> a torch.randn(2,3) >>> a tensor([[-1.7818, -0.2472, -2.0684],[ 0.…...

奇思妙想-可以通过图片闻见味道的设计

奇思妙想-可以通过图片闻见味道的设计 偷闲半日享清闲,炭火烧烤乐无边。肉串飘香引客至,笑语欢声绕云间。人生难得几回醉,且把烦恼抛九天。今宵共饮开怀酒,改日再战新篇章。周四的傍晚,难得的闲暇时光让我与几位挚友相…...

装饰者模式(设计模式)

装饰模式就是对一个类进行装饰,增强其方法行为,在装饰模式中,作为原来的这个类使用者还不应该感受到装饰前与装饰后有什么不同,否则就破坏了原有类的结构了,所以装饰器模式要做到对被装饰类的使用者透明,这…...

ADB调试命令大全

目录 前言命令大全1.显示当前运行的全部模拟器:adb devices2.启动ADB: adb start-server3.停止ADB: adb kill-server4.安装应用程序: adb install -r [apk文件]5.卸载应用程序: adb uninstall [packagename]6.将手机设备中的文件copy到本地计…...

查看npm版本异常,更新nvm版本解决问题

首先说说遇见的问题,基本上把nvm,npm的坑都排了一遍 nvm版本导致npm install报错 Unexpected token ‘.‘install和查看node版本都正确,结果查看npm版本时候报错 首先就是降低node版本… 可以说基本没用,如果要降低版本的话&…...

计算机行业

计算机行业环境分析 2022.01.12 计算机行业环境分析 计算机专业就业前景 随着科技的进步和信息事业的发展,尤其是计算机技术的发展与网络应用的逐渐普及。计算机已成为人们工作和生活中不可缺少的东西。IT行业迅猛发展,就业工作岗位也比比皆是。在最近…...

各种机器学习算法的应用场景分别是什么(比如朴素贝叶斯、决策树、K 近邻、SVM、逻辑回归最大熵模型)?

2023简直被人工智能相关话题席卷的一年。关于机器学习算法的热度,也再次飙升,网络上一些分享已经比较老了。那么今天借着查询和学习的机会,我也来浅浅分享下目前各种机器学习算法及其应用场景。 为了方便非专业的朋友阅读,我会从算…...

SQLite JDBC驱动程序

SQLite JDBC驱动程序下载地址: 下载地址...

Postgre 调优工具pgBadger部署

一,简介: pgBadger(日志分析器)类似于oracle的AWR报告(基于1小时,一天,一周,一月的报告),以图形化的方式帮助DBA更方便的找到隐含问题。 pgbadger是为了提高…...

【云原生】Kubernetes----Helm包管理器

目录 引言 一、Helm概述 1.Helm价值概述 2.Helm的基本概念 3.Helm名词介绍 二、安装Helm 1.下载二进制包 2.部署Helm环境 3.添加补全信息 三、使用Helm部署服务 1.创建chart 2.查看文件信息 3.安装chart 4.卸载chart 5.自定义chart服务部署 6.版本升级 7.版本…...

Bootstrap 5 进度条

Bootstrap 5 进度条 引言 Bootstrap 5 是目前最流行的前端框架之一,它提供了一套丰富的组件和工具,帮助开发者快速构建响应式、移动设备优先的网页。在本文中,我们将重点探讨 Bootstrap 5 中的进度条组件,包括其基本用法、定制选…...

MySQL查询数据库中所有表名表结构及注释以及生成数据库文档

MySQL查询数据库中所有表名表结构及注释 生成数据库文档在后面!!! select t.TABLE_COMMENT -- 数据表注释 , c.TABLE_NAME -- 表名称 , c.COLUMN_COMMENT -- 数据项 , c.COLUMN_NAME -- 英文名称 , -- 字段描述 , upper(c.DATA_TYPE) as …...

Redis缓存穿透、缓存雪崩和缓存击穿的解决方案

Redis缓存穿透、缓存雪崩和缓存击穿的解决方案 引言 Redis作为当前非常流行的内存数据结构存储系统,以其高性能和灵活性被广泛应用于缓存、消息队列、排行榜等多种场景。然而,在实际使用过程中,可能会遇到缓存穿透、缓存雪崩和缓存击穿等问…...

如何解决javadoc一直找不到路径的问题?

目录 一、什么是javadoc二、javadoc为什么会找不到路径三、如何解决javadoc一直找不到路径的问题 一、什么是javadoc Javadoc是一种用于生成Java源代码文档的工具,它可以帮助开发者生成易于阅读和理解的文档。Javadoc通过解析Java源代码中的注释,提取其…...

redis 笔记2之哨兵

文章目录 一、哨兵1.1 简介1.2 实操1.2.1 sentinel.conf1.2.2 问题1.2.3 哨兵执行流程和选举原理1.2.4 使用建议 一、哨兵 1.1 简介 上篇说了复制,有个缺点就是主机宕机之后,从机只会原地待命,并不能升级为主机,这就不能保证对外…...

LVS+Keepalived NGINX+Keepalived 高可用群集实战部署

Keepalived及其工作原理 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案,可以解决静态路由出现的单点故障问题。 VRRP协议(虚拟路由冗余协议) 是针对路由器的一种备份解决方案由多台路由器组成一个热备组,通过共用的…...

Mybatis做批量操作

动态标签foreach,做过批量操作,但是foreach只能处理记录数不多的批量操作,数据量大了后,先不说效率,能不能成功操作都是问题,所以这里讲一讲Mybatis正确的批量操作方法: 在获取opensession对象…...

Python | 中心极限定理介绍及实现

统计学是数据科学项目的重要组成部分。每当我们想从数据集的样本中对数据集的总体进行任何推断,从数据集中收集信息,或者对数据集的参数进行任何假设时,我们都会使用统计工具。 中心极限定理 定义:中心极限定理,通俗…...

探索Napier:Kotlin Multiplatform的日志记录库

探索Napier:Kotlin Multiplatform的日志记录库 在现代软件开发中,日志记录是不可或缺的部分,它帮助开发者追踪应用的行为和调试问题。对于Kotlin Multiplatform项目而言,能够在多个平台上统一日志记录的方法显得尤为重要。Napier…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

PostgreSQL 与 SQL 基础:为 Fast API 打下数据基础

在构建任何动态、数据驱动的Web API时&#xff0c;一个稳定高效的数据存储方案是不可或缺的。对于使用Python FastAPI的开发者来说&#xff0c;深入理解关系型数据库的工作原理、掌握SQL这门与数据库“对话”的语言&#xff0c;以及学会如何在Python中操作数据库&#xff0c;是…...

[QMT量化交易小白入门]-六十二、ETF轮动中简单的评分算法如何获取历史年化收益32.7%

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读1. 策略概述2. 趋势评分模块3 代码解析4 木头…...

[特殊字符] Spring Boot底层原理深度解析与高级面试题精析

一、Spring Boot底层原理详解 Spring Boot的核心设计哲学是约定优于配置和自动装配&#xff0c;通过简化传统Spring应用的初始化和配置流程&#xff0c;显著提升开发效率。其底层原理可拆解为以下核心机制&#xff1a; 自动装配&#xff08;Auto-Configuration&#xff09; 核…...

大模型的LoRa通讯详解与实现教程

一、LoRa通讯技术概述 LoRa(Long Range)是一种低功耗广域网(LPWAN)通信技术,由Semtech公司开发,特别适合于物联网设备的长距离、低功耗通信需求。LoRa技术基于扩频调制技术,能够在保持低功耗的同时实现数公里甚至数十公里的通信距离。 LoRa的主要特点 长距离通信:在城…...