微信小程序学习(八):behaviors代码复用
小程序的 behaviors 方法是一种代码复用的方式,可以将一些通用的逻辑和方法提取出来,然后在多个组件中复用,从而减少代码冗余,提高代码的可维护性。
如果需要 behavior 复用代码,需要使用 Behavior() 方法,每个 behavior 可以包含一组属性、数据、生命周期函数和方法
组件引用它时,它的属性、数据和方法会被合并到组件中,生命周期函数也会在对应时机被调用。
1、注册 behavior
如果需要注册一个 behavior,需要借助 Behavior() 方法,接受一个 Object 类型的参数
// my-behavior.js
module.exports = Behavior({behaviors: [],properties: {myBehaviorProperty: {type: String}},data: {myBehaviorData: 'my-behavior-data'},created: function () {console.log('[my-behavior] created')},attached: function () {console.log('[my-behavior] attached')},ready: function () {console.log('[my-behavior] ready')},methods: {myBehaviorMethod: function () {console.log('[my-behavior] log by myBehaviorMehtod')},}
})
2、使用 behavior
// my-component.js
const myBehavior = require('my-behavior')Component({behaviors: [myBehavior]// coding...
})
3、同名字段
组件和它引用的 behavior 中可以包含同名的字段,对这些字段的处理方法如下:
- 如果有同名的
属性或方法,采用 “就近原则”,组件会覆盖 behavior 中的同名属性或方法 - 如果有同名的数据字段且都是
对象类型,会进行对象合并,其余情况会 采用 “就近原则” 进行数据覆盖 生命周期函数和 observers 不会相互覆盖,会是在对应触发时机被逐个调用,也就是都会被执行
相关文章:
微信小程序学习(八):behaviors代码复用
小程序的 behaviors 方法是一种代码复用的方式,可以将一些通用的逻辑和方法提取出来,然后在多个组件中复用,从而减少代码冗余,提高代码的可维护性。 如果需要 behavior 复用代码,需要使用 Behavior() 方法,…...
【The design pattern of Attribute-Based Dynamic Routing Pattern (ADRP)】
In ASP.NET Core, routing is one of the core functionalities that maps HTTP requests to the corresponding controller actions. While “Route-Driven Design Pattern” is a coined name for a design pattern, we can construct a routing-centric design pattern base…...
2713. 矩阵中严格递增的单元格数
题目 给定一个 m x n 的整数矩阵 mat,我们需要找出从某个单元格出发可以访问的最大单元格数量。移动规则是可以从当前单元格移动到同一行或同一列的任何其他单元格,但目标单元格的值必须严格大于当前单元格的值。需要返回最大可访问的单元格数量。 示例…...
git创建子模块
有种情况我们经常会遇到:某个工作中的项目需要包含并使用另一个项目。 也许是第三方库,或者你独立开发的,用于多个父项目的库。 现在问题来了:你想要把它们当做两个独立的项目,同时又想在一个项目中使用另一个。 Git …...
把Deepin塞进U盘,即插即用!Deepin To Go来袭
前言 小伙伴之前在某篇文章下留言说:把Deepin塞进U盘的教程。 这不就来了吗? 事实是可以的。这时候你要先做点小准备: 一个大小为8GB或以上的普通U盘 一个至少64GB或以上的高速U盘 一个Deepin系统镜像文件 普通U盘的大概介绍࿱…...
给【AI硬件】创业者的论文、开源项目和产品整理
一、AI 硬件精选论文 《DrEureka: Language Model Guided Sim-To-Real Transfer》 瑜伽球上遛「狗」这项研究由宾夕法尼亚大学、 NVIDIA 、得克萨斯大学奥斯汀分校的研究者联合打造,并且完全开源。他们提出了 DrEureka(域随机化 Eureka)&am…...
模拟面试题卷二
1. 什么是JavaEE框架,你能列举一些常用的JavaEE框架吗? 答:JavaEE框架是一套用于开发企业级应用的技术规范和工具集合。常用的JavaEE框架有Spring、Hibernate、Struts、JSF等。 2. 请解释一下面向对象技术和设计原则是什么,你能…...
22种常用设计模式示例代码
文章目录 创建型模式结构型模式行为模式 仓库地址https://github.com/Xiamu-ssr/DesignPatternsPractice 参考教程 refactoringguru设计模式-目录 创建型模式 软件包复杂度流行度工厂方法factorymethod❄️⭐️⭐️⭐️抽象工厂abstractfactory❄️❄️⭐️⭐️⭐️生成器bui…...
Java面试题:对比ArrayList和LinkedList的内部实现,以及它们在不同场景下的适用性
ArrayList和LinkedList是Java中常用的两个List实现,它们在内部实现和适用场景上有很大差异。下面是详细的对比分析: 内部实现 ArrayList 数据结构:内部使用动态数组(即一个可变长的数组)实现。存储方式:…...
ping: www.baidu.com: 未知的名称或服务(IP号不匹配)
我用的是VMware上的Red Hat Enterprise Linux 9,出现了能联网但ping不通外网的情况。 问题描述:设置中显示正常连接,而且虚拟机右上角有联网的图标,但不能通外网。 按照网上教程修改了/etc/resolv.conf和/etc/sysconfig/network-…...
谷神前端组件增强:子列表
谷神Ag-Grid导出Excel // 谷神Ag-Grid导出Excel let allDiscolumns detailTable.getAllDisColumns() let columnColIds columns.map(column > column.colId) let columnKeys columnColIds.filter(item > ![select, "_OPT_FIELD_"].includes(item)) detailT…...
测试cudaStream队列的深度
测试cudaStream队列的深度 一.代码二.编译运行[得出队列深度为512] 以下代码片段用于测试cudaStream队列的深度 方法: 主线程一直发任务,启一个线程cudaEventQuery查询已完成的任务,二个计数器的值相减 一.代码 #include <iostream> #include <thread> #include …...
海康威视 isecure center 综合安防管理平台任意文件上传漏洞
文章目录 前言声明一、漏洞描述二、影响版本三、漏洞复现四、修复方案 前言 海康威视是以视频为核心的智能物联网解决方案和大数据服务提供商,业务聚焦于综合安防、大数据服务和智慧业务。 海康威视其产品包括摄像机、多屏控制器、交通产品、传输产品、存储产品、门禁产品、消…...
shadertoy-安装和使用
一、安装vscode 安装vscode流程 二、安装插件 1.安装glsl编辑插件 2.安装shader toy插件 三、创建glsl文件 test.glsl文件 float Grid(float size, vec2 fragCoord) {vec2 r fragCoord / size;vec2 grid abs(fract(r - 0.5) - 0.5) / fwidth(r);float line min(grid…...
matlab线性多部法求常微分方程数值解
用Adamas内差二步方法,内差三步方法,外差二步方法,外差三步方法这四种方法计算。 中k为1和2. k为2和3 代码 function chap1_adams_methodu0 1; T 2; h 0.1; N T/h; t 0:h:T; solu exact1(t);f f1; u_inter_2s adams_inter_2steps(…...
前端页面实现【矩阵表格与列表】
实现页面: 1.动态表绘制(可用于矩阵构建) <template><div><h4><b>基于层次分析法的权重计算</b></h4><table table-layout"fixed"><thead><tr><th v-for"(_, colI…...
GPT4v和Gemini-Pro调用对比
要调用 GPT-4 Vision (GPT-4V) 和 Gemini-Pro,以下是详细的步骤分析,包括调用流程、API 使用方法和两者之间的区别,以及效果对比和示例。 GPT-4 Vision (GPT-4V) 调用步骤 GPT-4 Vision 主要通过 OpenAI 的 API 进行调用,用于处…...
破布叶(Microcos paniculata)单倍型染色体级别基因组-文献精读22
Haplotype-resolved chromosomal-level genome assembly of Buzhaye (Microcos paniculata) 破布叶、布渣叶(Microcos paniculata)单倍型解析染色体级别基因组组装 摘要 布渣叶(Microcos paniculata)是一种传统上用作民间药物和…...
浅谈RC4
一、什么叫RC4?优点和缺点 RC4是对称密码(加密解密使用同一个密钥)算法中的流密码(一个字节一个字节的进行加密)加密算法。 优点:简单、灵活、作用范围广,速度快 缺点:安全性能较差&…...
uniapp微信小程序开发物料
开发工具 HBuilder: HBuilderX-高效极客技巧 vscode 1、在vscode中新建一个项目npx degit dcloudio/uni-preset-vue#vite-ts 项目名称 2、在HBuilder中可以可视化进行新建项目 路由 在app.json文件中配置pages路由路径 路由跳转方法 uni.navigateTo(OBJECT)…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
