当前位置: 首页 > news >正文

DeepSpeed Monitoring Comm. Logging

Monitoring

支持多种后端:Tensorboard、WandB、Comet、CSV文件;

TensorBoard例子:

自动监控:DeepSpeed自动把重要metric记录下来。只需在配置文件里enable相应的看板后端即可:

{"tensorboard": {"enabled": true,"output_path": "output/ds_logs/","job_name": "train_bert"}"wandb": {"enabled": true,"team": "my_team","group": "my_group","project": "my_project"}"comet": {"enabled": true,"project": "my_project","experiment_name": "my_experiment"}"csv_monitor": {"enabled": true,"output_path": "output/ds_logs/","job_name": "train_bert"}
}

 自定义监控:

# Step 1: Import monitor (and DeepSpeed config, if needed)
from deepspeed.monitor.monitor import MonitorMaster
from deepspeed.runtime.config import DeepSpeedConfig

# Step 2: Initialized monitor with DeepSpeed config (get DeepSpeed config object, if needed)
ds_config = DeepSpeedConfig("ds_config.json")
monitor = MonitorMaster(ds_config.monitor_config)

for epoch in range(2):

    running_loss = 0.0
    for i, data in enumerate(trainloader):
        pre = time.time()
        inputs, labels = data[0].to(model_engine.local_rank), data[1].to(
            model_engine.local_rank)
        if fp16:
            inputs = inputs.half()
        outputs = model_engine(inputs)
        loss = criterion(outputs, labels)

        model_engine.backward(loss)
        model_engine.step()
        post = time.time()
        # Step 3: Create list of 3-tuple records (single entry in this case)
        events = [("Time per step", post-pre, model_engine.global_samples)]
        # Step 4: Call monitor.write_events on the list from step 3
        monitor.write_events(events)

 [("Time per step", post-pre, model_engine.global_samples)],<表名,纵轴值,横轴值>

 

通信Logging

注意:加了logging, 所有通信将改为同步,对性能会有伤害。

所有deepspeed.comm下的通信,都将被统计上。

在配置文件里打开:

"comms_logger": {"enabled": true,"verbose": false,"prof_all": true,"debug": false
}

verbose: 边跑,边把发生的通信,一条条写下来。例:

[2022-06-26 01:39:55,722] [INFO] [logging.py:69:log_dist] [Rank 0] rank=0 | comm op: reduce_scatter_tensor | time (ms): 9.46 | msg size: 678.86 MB | algbw (Gbps): 1204.52  | busbw (Gbps): 1129.23
[2022-06-26 01:39:56,470] [INFO] [logging.py:69:log_dist] [Rank 0] rank=0 | comm op: all_gather_into_tensor | time (ms): 0.11 | msg size: 6.0 MB | algbw (Gbps): 954.41  | busbw (Gbps): 894.76
[2022-06-26 01:39:56,471] [INFO] [logging.py:69:log_dist] [Rank 0] rank=0 | comm op: all_gather_into_tensor | time (ms): 0.08 | msg size: 6.0 MB | algbw (Gbps): 1293.47  | busbw (Gbps): 1212.63

algbw: algorithm bandwidth, 发生的通信size/实际通信时间;

busbw: 硬件理论带宽;是个固定值;

algbw如果比busbw小太多,说明糟糕,有待进一步优化;

总结式:deepspeed.comm.log_summary()

Comm. Op            Message Size        Count               Total Latency(ms)   Avg Latency(ms)     tput_avg (Gbps)     busbw_avg (Gbps)
broadcast2.0 KB              146                 11.12               0.08                0.43                0.4198.25 MB            1                   8317.12             8317.12             0.20                0.19
reduce_scatter_tensor678.86 MB           40                  602.29              9.69                1468.06             1376.31

展示通信等待时长:

dist.log_summary(show_straggler=True)

 这么计算的:(一次组播通信里,每个rank的完成时间,减去,所有rank里完成最快的,这些"等待"时间,加和到一起)

straggler = sum(t_collectives - allreduce(t_collectives, MIN))

相关文章:

DeepSpeed Monitoring Comm. Logging

Monitoring 支持多种后端&#xff1a;Tensorboard、WandB、Comet、CSV文件&#xff1b; TensorBoard例子&#xff1a; 自动监控&#xff1a;DeepSpeed自动把重要metric记录下来。只需在配置文件里enable相应的看板后端即可&#xff1a; {"tensorboard": {"enabl…...

关于INCA的几个实用功能

01--VUI窗口设计 这个可以按照自己的想法设计INCA观测或标定窗口 首先进入到INCA的环境内&#xff0c;点击实验→加载VUI窗口 选择空的窗口 打开后如下所示&#xff1a; 点击UI开发模式&#xff0c;如下图 如下&#xff1a; 添加标定量、观测量、示波器 窗口的大小需要在开发…...

Mamaba3--RNN、状态方程、勒让德多项式

Mamaba3–RNN、状态方程、勒让德多项式 一、简单回顾 在Mamba1和Mamba2中分别介绍了RNN和状态方程。 下面从两个图和两个公式出发&#xff0c;对RNN和状态方程做简单的回顾&#xff1a; R N N : s t W s t − 1 U x t &#xff1b; O t V s t RNN: s_t Ws_{t-1}Ux_t&…...

PLC模拟量和数字量到底有什么区别?

PLC模拟量和数字量的区别 在工业自动化领域&#xff0c;可编程逻辑控制器&#xff08;PLC&#xff09;是控制各种机械设备和生产过程的核心组件。PLC通过处理模拟量和数字量来实现对工业过程的精确控制。了解模拟量和数字量的区别对于设计高效、可靠的自动化系统至关重要。 1. …...

html中如何写一个提示框,css画一个提示框

在HTML中&#xff0c;提示框通常使用<div>元素来创建&#xff0c;然后使用CSS进行样式化。以下是一个示例&#xff0c;展示如何在HTML中写一个提示框&#xff0c;并使用CSS来设计其外观。 HTML 首先&#xff0c;创建一个HTML文件&#xff0c;其中包含一个提示框的结构&…...

ExoPlayer 学习笔记

https://www.51cto.com/article/777840.html ExoPlayer支持多种媒体格式和流媒体协议的播放器 播放视频&#xff1a;player.play()暂停视频&#xff1a;player.pause()停止播放&#xff1a;player.stop() Media3 ExoPlayer | Android media | Android Developers implem…...

汽车IVI中控开发入门及进阶(二十七):车载摄像头vehicle camera

前言: 在车载IVI、智能座舱系统中,有一个重要的应用场景就是视频。视频应用又可分为三种,一种是直接解码U盘、SD卡里面的视频文件进行播放,一种是手机投屏,就是把手机投屏软件已视频方式投屏到显示屏上显示,另外一种就是对视频采集设备(主要就是摄像头Camera)的视频源…...

Transformer模型:未来的改进方向与潜在影响

Transformer模型&#xff1a;未来的改进方向与潜在影响 自从2017年Google的研究者们首次提出Transformer模型以来&#xff0c;它已经彻底改变了自然语言处理&#xff08;NLP&#xff09;领域的面貌。Transformer的核心优势在于其“自注意力&#xff08;Self-Attention&#xf…...

ROS 激光雷达

ROS 激光雷达 基本工作原理 激光雷达&#xff08;LIDAR&#xff0c;Light Detection and Ranging&#xff09;是一种用于测量距离的远程感应技术。它通过向目标发射激光并分析反射回来的光来测量目标与激光发射源之间的距离。激光雷达广泛应用于多种领域&#xff0c;包括地理…...

杂说咋说-关于城市化发展和城市治理的几点建议(浙江借鉴)

杂说咋说-关于城市化发展和城市治理的几点建议&#xff08;浙江借鉴&#xff09; 近年来&#xff0c;浙江省坚持一张蓝图绘到底&#xff0c;推动城市化发展和城市治理不断迈上新台阶&#xff0c;全省城市化水平和城市治理能力牢牢居于全国第一方阵。当前&#xff0c;国内外环境…...

Linux 常用命令 - which【定位可执行文件的位置】

简介 which 命令源自于英文单词 "which"&#xff0c;用于在环境变量 PATH 所指定的路径中搜索某个可执行文件或链接&#xff08;如一个系统命令&#xff09;的位置&#xff0c;并返回第一个搜索结果。这个命令会遍历 PATH 环境变量中的所有路径&#xff0c;直到找到…...

js文件导出功能

效果图&#xff1a; 代码示例&#xff1a; <!DOCTYPE html> <html> <head lang"en"><meta charset"UTF-8"><title>html 表格导出道</title><script src"js/jquery-3.6.3.js"></script><st…...

PHP转Go系列 | 字符串的使用姿势

大家好&#xff0c;我是码农先森。 输出 在 PHP 语言中的输出比较简单&#xff0c;直接使用 echo 就可以。此外&#xff0c;在 PHP 中还有一个格式化输出函数 sprintf 可以用占位符替换字符串。 <?phpecho 码农先森; echo sprintf(码农:%s, 先森);在 Go 语言中调用它的输…...

vue关于:deep穿透样式的理解

情况一 子组件&#xff1a; <div class"child"><div class"test_class">test_class<div class"test1">test1<div class"test2">test2</div></div></div></div>父组件&#xff1a; …...

算法 |数字计数

给出n个数字,请你求出在给出的这n个数字当中,最大的数字与次大的数字之差,最大的数字与次小的数字之差,次大的数字与次小的数字之差,次大的数字与最小的数字之差. 易错点 1 1 2 3 4 4 次小不是a[1]了 次大也不是a[n-2]了 #include<bits/stdc.h> using namespace std; …...

通义千问调用笔记

如何使用通义千问API_模型服务灵积(DashScope)-阿里云帮助中心 package com.ruoyi.webapp.utils;import com.alibaba.dashscope.aigc.generation.Generation; import com.alibaba.dashscope.aigc.generation.GenerationOutput; import com.alibaba.dashscope.aigc.generation.G…...

Linux常见的压缩文件种类与对应的压缩解压方法

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

LNMP网站架构

一、安装nginx服务 1、关闭防火墙和核心防护 systemctl stop firewalld systemctl disable firewalld setenforce 0 2、安装依赖包 yum -y install pcre-devel zlib-devel openssl-devel gcc gcc-c make 3、创建运行用户 useradd -M -s /sbin/nologin nginx 4、编译安装…...

排序算法及源代码

堆排序&#xff1a; 在学习堆之后我们知道了大堆和小堆&#xff0c;对于大堆而言第一个节点就是对大值&#xff0c;对于小堆而言&#xff0c;第一个值就是最小的值。如果我们把第一个值与最后一个值交换再对最后一个值前面的数据重新建堆&#xff0c;如此下去就可以实现建堆排…...

力扣第206题“反转链表”

在本篇文章中&#xff0c;我们将详细解读力扣第206题“反转链表”。通过学习本篇文章&#xff0c;读者将掌握如何使用迭代和递归的方法来解决这一问题&#xff0c;并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释&#xff0c;以便于理解。 问题描述 力扣第…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...