在 macOS 上使用 Homebrew 安装和配置 Python 及 Tk 库
在 macOS 上,系统自带的 /usr/bin/python3 版本较旧,且直接升级系统自带的 Python 版本可能会影响系统稳定性。因此,推荐使用 Homebrew 来安装和管理 Python 及其相关库。本文将详细介绍如何通过 Homebrew 安装和配置 Python 3 及 Tk 库,并设置全局 python 命令。
一、安装 Homebrew
如果尚未安装 Homebrew,可以通过以下命令进行安装:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
二、使用 Homebrew 安装 Python
-
更新 Homebrew:
brew update -
安装 Python 3:
brew install python这将安装最新版本的 Python 3,并自动安装所需的依赖项,包括 Tk 库。
三、安装和配置 Tk 库
虽然 Homebrew 安装 Python 时会自动安装 Tk 库,但如果需要单独安装或重新配置 Tk 库,可以执行以下步骤:
-
安装 Tk 库:
brew install tcl-tk -
配置环境变量:
确保你的 shell 配置文件(如
~/.zshrc或~/.bash_profile)包含以下内容,以便正确链接 Tk 库:export PATH="/usr/local/opt/python/libexec/bin:$PATH" export LDFLAGS="-L/usr/local/opt/tcl-tk/lib" export CPPFLAGS="-I/usr/local/opt/tcl-tk/include" export PKG_CONFIG_PATH="/usr/local/opt/tcl-tk/lib/pkgconfig"添加以上内容后,重新加载配置文件:
source ~/.zshrc # 或者 source ~/.bash_profile
四、设置全局 python 命令
通过 Homebrew 安装的 Python 可能没有全局变量 python,而是使用 python3 来区分系统自带的 Python 2 版本。可以通过以下两种方法设置全局 python 命令:
方法一:创建符号链接
-
找到 Homebrew 安装的 Python 路径:
ls -l /usr/local/bin/python3 -
创建符号链接:
sudo ln -s /usr/local/bin/python3 /usr/local/bin/python -
验证:
python --version
方法二:修改 shell 配置文件
-
打开你的 shell 配置文件(例如
~/.zshrc或~/.bash_profile):nano ~/.zshrc # 或者 nano ~/.bash_profile -
添加以下内容:
alias python='/usr/local/bin/python3' -
保存并关闭文件,然后重新加载配置文件:
source ~/.zshrc # 或者 source ~/.bash_profile -
验证:
python --version
五、验证安装
-
检查 Python 版本:
python --version -
验证 Tkinter 是否正常工作:
python -c "import tkinter; tkinter._test()"如果一切正常,你会看到一个带有 “This is a Tcl/Tk test” 的小窗口。
通过以上步骤,你可以在 macOS 上成功安装和配置最新版本的 Python 3 及 Tk 库,并设置全局 python 命令,以便更方便地进行开发和使用。
相关文章:
在 macOS 上使用 Homebrew 安装和配置 Python 及 Tk 库
在 macOS 上,系统自带的 /usr/bin/python3 版本较旧,且直接升级系统自带的 Python 版本可能会影响系统稳定性。因此,推荐使用 Homebrew 来安装和管理 Python 及其相关库。本文将详细介绍如何通过 Homebrew 安装和配置 Python 3 及 Tk 库&…...
【机器学习 复习】第2章 线性回归及最大熵模型
一、概念 1.回归就是用一条曲线对数据点进行拟合,该曲线称为最佳拟合曲线,这个拟合过程称为回归。 2.一个自变量 叫 一元线性回归,大于一个自变量 叫 多元线性回归。 (1)多元回归:两个x,一个…...
关于椭圆的方程(有Python画的动图)
关于椭圆的方程(有Python画的动图) flyfish 几何定义 椭圆是平面上所有到两个固定点(焦点)的距离之和为常数的点的集合。这两个固定点叫做焦点。 解析几何描述 设椭圆的两个焦点为 F 1 F_1 F1 和 F 2 F_2 F2ÿ…...
selenium常见难点解决方案
勾选框勾选问题 勾选框代码逻辑实现过程: 第一步:首先找到勾选框的元素; 第二步:检查它是否已经被勾选。如果已经勾选,则进行取消勾选操作;如果未勾选,则进行点击勾选操作; 以下是一…...
【Python高级编程】 综合练习-使用OpenCV 进行视频数据处理
综合练习 读取一个视频文件,对其进行处理后保存为一个新的视频文件。具体的处理步骤包括调整帧大小、转换为灰度图像、垂直翻转画面以及添加高斯噪声。 下面是代码的详细实现: import cv2 import numpy as np# 定义一个函数,用来给图像添加…...
rs232和can的区别
在电机通讯和升级固件时我们经常用到RS232和CAN两种通讯模式,那这两种有何不同吗? RS232和CAN的主要区别在于通信方式、应用场景、传输距离、通信速度以及网络结构。 通信方式: RS232是一种串行通信接口标准,支持全双工通信&…...
嵌入式软件stm32面试
一、STM32的内核型号有哪些? STM32系列是STMicroelectronics(意法半导体)生产的基于ARM Cortex-M内核的微控制器产品线。这些产品按照不同的内核架构和性能特点分为了主流产品、超低功耗产品和高性能产品。 1.1 主流产品 STM32F0 系列&…...
【Git】-- 添加公钥到 github 或者gitlab上
仅针对系统:mac os 、 unix、linux 1、检查是否有 id_rsa.pub $ cd ~ $ ls -al ~/.ssh 注意:若已有 id_rsa.pub,则必要执行 第二步,避免覆盖掉原有正常的公钥。 配置多个 git 账号请参考:同一台电脑配置多个git账…...
Vue页面生成PDF后调起浏览器打印
一、安装依赖 首先,需要安装 html2canvas 和 jsPDF 库。 npm install html2canvas jspdf二、创建公共方法引入 在utils文件夹下创建两个文件分别为pdfExport.js和printPDF.js,代码如下: pdfExport.js import html2canvas from html2canv…...
纯前端实现导出excel
项目背景: vue2 插件: xlsx;xlsx-style;file-saver 说明: 单独使用 xlsx插件,也可以将网页上的table导出成excel,但是导出的excel,没有样式 结合xlsx-style;file-saver&a…...
QT windows 5.12.0 安装包
这个是在线包,需要有账号的。 没有也没事,安装界面可以现场注册 百度网盘链接: 链接:https://pan.baidu.com/s/1QvXDert4b94GbUfD2f2G4g?pwd8888 提取码:8888...
改进YOLOv7 | 在 ELAN 模块中添加【Triplet】【SpatialGroupEnhance】【NAM】【S2】注意力机制 | 附详细结构图
改进 YOLOv7 | 在 ELAN 模块中添加【Triplet】【SpatialGroupEnhance】【NAM】【S2】注意力机制:中文详解 1. 简介 YOLOv7 是目前主流的目标检测算法之一,具有速度快、精度高的特点。但 YOLOv7 的原始模型结构中缺乏注意力机制,导致模型对全…...
windows系统停止更新办法
windows系统停止更新 双击启动下载的文件 然后再回到系统-更新这里,选择日期就行。...
数据标注概念
数据标注的步骤 数据清洗:处理数据中的噪声、缺失值和异常值,确保数据的质量和完整性。 数据转换:将数据从原始格式转换为适合机器学习模型处理的格式。 数据标注:根据应用需求,为数据添加标签或注释,标识…...
网络安全复习笔记
概述 要素 CIA:可用性;完整性;保密性。 可控性;不可否认性;可审查性。 攻击 被动:窃听 - 保密性;监听 - 保密性主动:假冒 - 完整性;重放 - 完整性;改写 -…...
Laravel - excel 导入数据
在Laravel中,可以使用maatwebsite/excel这个库来处理Excel文件的导入。 1.用命令行窗口打开项目根目录,使用 Composer 安装 maatwebsite/excel composer require maatwebsite/excel --ignore-platform-reqs 在你的config/app.php文件中注册服务提供者&…...
移动语义和完美转发
C11 引入了许多新特性,使得编写高效且现代的 C 代码变得更加容易。其中,移动语义(Move Semantics)和完美转发(Perfect Forwarding)是两个重要的特性,极大地提升了 C 的性能和灵活性。 移动语义…...
【IDEA】Spring项目build失败
通常因为环境不匹配需要在file->projectstructure里面调整一下。...
【无标题】安卓app 流量
该工具可以用于安卓app 流量,内存,cpu,fps等专项内容测试,并且有整机内存,cpu对比,还可监控手机网速,app流量,数据导出等功能,重点还是免费,毕竟PerfDog收费了…...
国产化ETL产品必备的特性(非开源包装)
ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行抽取、清洗(净化)、转换、装载、标准、集成(汇总)...... 最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
