深度学习算法informer(时序预测)(三)(Encoder)
一、EncoderLayer架构如图(不改变输入形状)

二、ConvLayer架构如图(输入形状中特征维度减半)

三、Encoder整体
包括三部分
1. 多层EncoderLayer
2. 多层ConvLayer
3. 层归一化
代码如下
class AttentionLayer(nn.Module):def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None, mix=False):super(AttentionLayer, self).__init__()d_keys = d_keys or (d_model//n_heads)d_values = d_values or (d_model//n_heads)self.inner_attention = attentionself.query_projection = nn.Linear(d_model, d_keys * n_heads)self.key_projection = nn.Linear(d_model, d_keys * n_heads)self.value_projection = nn.Linear(d_model, d_values * n_heads)self.out_projection = nn.Linear(d_values * n_heads, d_model)self.n_heads = n_headsself.mix = mixdef forward(self, queries, keys, values, attn_mask):B, L, _ = queries.shape_, S, _ = keys.shapeH = self.n_headsqueries = self.query_projection(queries).view(B, L, H, -1)keys = self.key_projection(keys).view(B, S, H, -1)values = self.value_projection(values).view(B, S, H, -1)out, attn = self.inner_attention(queries,keys,values,attn_mask)if self.mix:out = out.transpose(2,1).contiguous()out = out.view(B, L, -1)return self.out_projection(out), attnclass ConvLayer(nn.Module):def __init__(self, c_in):super(ConvLayer, self).__init__()padding = 1 if torch.__version__>='1.5.0' else 2self.downConv = nn.Conv1d(in_channels=c_in,out_channels=c_in,kernel_size=3,padding=padding,padding_mode='circular')# 批量归一化层的作用是在训练过程中对每个批次的数据进行归一化处理# 使其均值接近于 0,方差接近于 1,从而加速模型的训练和提高模型的稳定性# 不会改变形状self.norm = nn.BatchNorm1d(c_in)self.activation = nn.ELU()self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)def forward(self, x):x = self.downConv(x.permute(0, 2, 1))x = self.norm(x)x = self.activation(x)x = self.maxPool(x)x = x.transpose(1,2)return xclass EncoderLayer(nn.Module):def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):super(EncoderLayer, self).__init__()d_ff = d_ff or 4*d_modelself.attention = attentionself.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)self.norm1 = nn.LayerNorm(d_model)self.norm2 = nn.LayerNorm(d_model)self.dropout = nn.Dropout(dropout)self.activation = F.relu if activation == "relu" else F.geludef forward(self, x, attn_mask=None):# x [B, L, D]# x = x + self.dropout(self.attention(# x, x, x,# attn_mask = attn_mask# ))new_x, attn = self.attention(x, x, x,attn_mask = attn_mask)x = x + self.dropout(new_x)y = x = self.norm1(x)y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))y = self.dropout(self.conv2(y).transpose(-1,1))return self.norm2(x+y), attnclass Encoder(nn.Module):def __init__(self, attn_layers, conv_layers=None, norm_layer=None):super(Encoder, self).__init__()self.attn_layers = nn.ModuleList(attn_layers)self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else Noneself.norm = norm_layerdef forward(self, x, attn_mask=None):# x [B, L, D]attns = []if self.conv_layers is not None:for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):x, attn = attn_layer(x, attn_mask=attn_mask)x = conv_layer(x)attns.append(attn)x, attn = self.attn_layers[-1](x, attn_mask=attn_mask)attns.append(attn)else:for attn_layer in self.attn_layers:x, attn = attn_layer(x, attn_mask=attn_mask)attns.append(attn)if self.norm is not None:x = self.norm(x)
相关文章:
深度学习算法informer(时序预测)(三)(Encoder)
一、EncoderLayer架构如图(不改变输入形状) 二、ConvLayer架构如图(输入形状中特征维度减半) 三、Encoder整体 包括三部分 1. 多层EncoderLayer 2. 多层ConvLayer 3. 层归一化 代码如下 class AttentionLayer(nn.Module):de…...
HTML和CSS基础(一)
前言 HTML(HyperText Markup Language)是一种用于创建网页的标准标记语言。它由各种标签组成,这些标签定义了网页的结构和内容。HTML的早期形式诞生于1989年,由CERN的物理学家Tim Berners-Lee发明,最初用于在科学家之…...
低代码平台教你两步把SQL直接转换为RESTful API
文章目录 前言一、简介1. 项目亮点2. 技术栈3. 核心功能4. 数据库设计二、搭建教程1. 目录结构2. 下载2.1 下载2.2 上传2.3 解压3. 配置3.1 创建并切换数据库3.2 执行sql文件3.3 修改配置文件4. 启动/停止4.1 启动4.2 停止4.3 重启5. 浏览器访问三、配置教程1. 数据源配置1.1 创…...
JavaWeb阶段学习知识点(二)
登录校验和JWT令牌实现 JWT使用方式 创建一个springboot项目,pom.xml引入jwt依赖 <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></dependency><!-- 针对jdk17或…...
数据结构【二叉树】
前言 我们在前面学习了使用数组来实现二叉树,但是数组实现二叉树仅适用于完全二叉树(非完全二叉树会有空间浪费),所以我们本章讲解的是链式二叉树,但由于学习二叉树的操作需要有一颗树,才能学习相关的基本…...
Vue P17-54
18、计算属性 示例:实现姓名的联动效果 可以用插值语法、method {{func()}} 这里必须有 ()表示返回值 在事件处理中,click“func1” 有没有无所谓 computed的计算属性和data中的属性都在vm中,但vm._data里只有后者…...
【自动驾驶】从零开始做自动驾驶小车
文章目录 自动驾驶小车系统、运动底盘的运动学分析和串口通信控制电机PID控制IMU初始化与陀螺仪零点漂移ubuntu基础教程ROS基础键盘控制巡线(雷达避障)雷达跟随视觉跟踪2D建图、2D导航3D建图、3D导航纯视觉建图导航语音控制KCF跟随自主建图建图与导航多机编队WEB浏览器显示摄像…...
一文让你彻底搞懂什么是VR、AR、AV、MR
随着科技的飞速发展,现实世界与虚拟世界的界限变得越来越模糊。各种与现实增强相关的技术如雨后春笋般涌现,令人眼花缭乱。本文将为你详细解读四种常见的现实增强技术:虚拟现实(VR)、增强现实(AR࿰…...
Python设计模式 - 简单工厂模式
定义 简单工厂模式是一种创建型设计模式,它通过一个工厂类来创建对象,而不是通过客户端直接实例化对象。 结构 工厂类(Factory):负责创建对象的实例。工厂类通常包含一个方法,根据输入参数的不同创建并返…...
L55--- 257.二叉树的所有路径(深搜)---Java版
1.题目描述 2.思路 (1)因为是求二叉树的所有路径 (2)然后是带固定格式的 所以我们要把每个节点的整数数值换成字符串数值 (3)首先先考虑根节点,也就是要满足节点不为空 返回递归的形式dfs(根节…...
智慧园区解决方案PPT(53页)
## 1.1 智慧园区背景及需求分析 - 智慧园区的发展历程包括园区规划、经济、产业、企业、管理、理念的转变,强调管理模式创新,关注业务综合化、管理智慧化等发展。 ## 1.2 国家对智慧园区发展的政策 - 涉及多个国家部门,如工信部、住建部、…...
Windows安装MySQL(8.0.37)
安装:https://blog.csdn.net/XLBYYDS/article/details/139711682 注意点: (1)必须安装到C盘系统盘,否则执行 net start mysql 启动服务时,可能会启动失败。 (2)如果安装时出现 The…...
永磁同步电机驱动死区补偿
1 死区效应及补偿 1. 1 死区效应 在本文的电机控制嵌入式系统中,逆变器为三 相电压型桥式逆变电路,如图 1 所示。 在理想状态 下,上桥臂和下桥臂的控制信号满足互补通断原则, 即上桥臂开通时,下桥臂关断,反之亦然。 而在实际 应用中,开关管的通断需要一定的开通时…...
智能体合集
海外版coze: 前端代码助手 后端代码助手: 前端代码助手:...
智能农业管理系统设计
一、引言 随着物联网、云计算和大数据技术的快速发展,智能农业管理系统成为提高农业生产效率、优化资源配置、降低环境污染的重要手段。本设计旨在构建一个集数据采集、传输、处理、分析于一体的智能农业管理系统,为农业生产提供全方位、精准化的服务。 …...
Matlab的Simulink系统仿真(simulink调用m函数)
这几天要用Simulink做一个小东西,所以在网上现学现卖,加油! 起初的入门是看这篇文章MATLAB 之 Simulink 操作基础和系统仿真模型的建立_matlab仿真模型搭建-CSDN博客 写的很不错 后面我想在simulink中调用m文件 在 Simulink 中调用 MATLA…...
C语言中操作符详解(一)
众所周知,在我们的C语言中有着各式各样的操作符,并且在此之前呢,我们已经认识并运用了许许多多的操作符,都是诸君的老朋友了昂 操作符作为我们使用C语言的一个非常非常非常重要的工具,诸君一定要加以重视,…...
【论文阅读】Multi-Camera Unified Pre-Training via 3D Scene Reconstruction
论文链接 代码链接 多摄像头三维感知已成为自动驾驶领域的一个重要研究领域,为基于激光雷达的解决方案提供了一种可行且具有成本效益的替代方案。具有成本效益的解决方案。现有的多摄像头算法主要依赖于单目 2D 预训练。然而,单目 2D 预训练忽略了多摄像…...
深入了解NumPy的原理与使用
文章目录 一、引言二、NumPy的原理1. 多维数组对象2. 广播(Broadcasting)3. 内存效率和速度 三、NumPy的使用1. 创建数组2. 数组操作3. 广播(Broadcasting)示例 四、总结 一、引言 在Python的数据科学和科学计算领域,…...
Linux Centos 环境下搭建RocketMq集群(双主双从)
1、下载rocketmq的包 下载 | RocketMQ 2、配置环境变量 1、编辑环境变量文件:vim /etc/profile2、加入如下配置: #rocketmq 4.9.8 ROCKETMQ_HOME/home/rocketmq/rocketmq-4.9.8 export PATH${ROCKETMQ_HOME}/bin:${PATH}3、刷新配置:source…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
